省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
Output
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
Sample Input
3 3 1 2 1 1 3 2 2 3 4 1 3 2 3 2 0 100
Sample Output
3 ?最小生成树(prim)#include <stdio.h> #include <string.h> #include <math.h> #include <stdlib.h> #include <ctype.h> #define infinity 1000000 #define max_vertexes 500 typedef int Graph[max_vertexes][max_vertexes]; void prim(Graph G,int vcount,int father[]) { int i,j,k; int lowcost[max_vertexes]; int closeset[max_vertexes],used[max_vertexes]; int min; int weight=0,flag=0; for (i=0;i<vcount;i++) { lowcost[i]=G[0][i]; closeset[i]=0; used[i]=0; father[i]=-1; } used[0]=1; for (i=1;i<=vcount-1;i++) { j=0; min = infinity; for (k=1;k<vcount;k++) //找处可以选择的节点 { if ((!used[k])&&(lowcost[k]<min)) { min = lowcost[k]; j=k; } } father[j]=closeset[j]; //printf("%d %d\n",j,closeset[j]); used[j]=1; //更新可能的段路径 for (k=1;k<vcount;k++) { if (!used[k]&&(G[j][k]<lowcost[k])) { lowcost[k]=G[j][k]; closeset[k]=j; } } } for(i=0;i<vcount;i++) { //printf("%d\n",lowcost[i]); if(lowcost[i]!=infinity) { flag++; weight+=lowcost[i]; } } if(flag==vcount-1) printf("%d\n",weight); else printf("?\n"); } int main() { int i,j,k,m,n,p; Graph G; int fatheer[max_vertexes]; while(scanf("%d %d",&n,&m)!=EOF) { if(n==0) break; for(i=0; i<max_vertexes; i++) for(j=0; j<max_vertexes; j++) G[i][j] = infinity; for(k=0;k<n;k++) { scanf("%d %d",&i,&j); scanf("%d",&p); G[i-1][j-1]=p; G[j-1][i-1]=p; } prim(G,m,fatheer); } return 0; }