关于斗牛(纸牌游戏)与概率

前言

今年过年回老家,我表弟带了一副扑克牌,我闲来无事,就和他还有我表哥玩儿了起来,然后我表哥就提出了一种全新的玩儿法:斗牛,再然后就有了这篇文章。

正片

那关于斗牛这种游戏,相信很多人都没玩儿过,那我就先介绍一下规则。

规则

  1. 首先去掉扑克牌中的大小王并定下一个惩罚。
  2. 然后选一人当庄,给每人发五张牌。
  3. 每个人要把手上的牌分成三张加两张的形式,其中三张之和为 10 10 10 的倍数,另外两张之和   m o d   10 \bmod10 mod10 的值就是点数。(J,Q,K 算 10 10 10,如果余数为 0 0 0 则算作 10 10 10
  4. 所有人翻牌并展示出自己的点数,庄如果输给一个民,就做那个民自身带的惩罚,如果民输给了庄,就做庄带的惩罚,如果两家打平,就谁都不做。
  5. 做惩罚。
  6. 想你的下一局去吧。

然后这个输赢是按照比大小定的。其中,凑不出满足要求的情况为最小的,点数为 1 1 1 10 10 10 的按大小排序,如果点数为 8 8 8 9 9 9,自身带的惩罚翻两倍,如果点数为 10 10 10,惩罚翻三倍。其中还有些特殊情况,这时不需要满足 3 + 2 3+2 3+2 的条件。

  • 如果五张连在一起是顺子或同花,则惩罚翻五倍。
  • 如果五张连一起是同花顺,惩罚翻十倍。
  • 如果五张中有四张点数一样的牌,算炸弹,惩罚翻十倍。

把这些按照大小排序就是:没点 < \lt < 点数为 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 1,2,3,4,5,6,7,8,9,10 1,2,3,4,5,6,7,8,9,10(按大小排序) < \lt < 顺子 < \lt < 同花 < \lt < 同花顺 < \lt < 炸弹。如果都为顺子、同花、同花顺、炸弹,则按照正常的斗地主中的方法比大小。

概率计算

书接上回,听完了规则后我就觉着奇怪了:为啥顺子和同花都是翻五倍,但顺子就小于同花呢?是不是歧视顺子啊! 我决定按照出现概率重新排一下序,这样才公平嘛 (我真是个小机灵鬼),然后我就动动指头——按在了键盘上,然后就有了这篇神奇的文章。

其实这也不难算,因为要抽到五张连顺是五个连续的事件,所以这里用乘法原理,假设我先抽到了一张 1 1 1,那么我要后面抽到的分别是 2 , 3 , 4 , 5 2,3,4,5 2,3,4,5 才能顺子,那我先抽到 1 1 1 的概率是多少呢?这很好算,答案就是:

P ( 抽到 1 ) = 4 52 = 1 13 P(\text{抽到} 1)=\frac{4}{52}=\frac{1}{13} P(抽到1)=524=131

假设我现在抽走了一张 1 1 1,这时牌堆还剩下 51 51 51 张牌,那么抽到 2 2 2 的概率就是:

P ( 抽到 2 ) = 4 51 P(\text{抽到} 2)=\frac{4}{51} P(抽到2)=514

依次下去,那么抽到 1 , 2 , 3 , 4 , 5 1,2,3,4,5 1,2,3,4,5 的概率就是:

P ( 抽到 1 , 2 , 3 , 4 , 5 ) = 4 52 × 4 51 × 4 50 × 4 49 × 4 48 ≈ 3.28 e − 6 P(\text{抽到} 1,2,3,4,5)=\frac{4}{52}\times\frac{4}{51}\times\frac{4}{50}\times\frac{4}{49}\times\frac{4}{48}\approx3.28e^{-6} P(抽到1,2,3,4,5)=524×514×504×494×4843.28e6

而我不一定要抽到 1 , 2 , 3 , 4 , 5 1,2,3,4,5 1,2,3,4,5,这里再用一下加法原理可知:

P ( 抽到顺子 ) = 3.28 e − 6 × ( 13 − 5 + 1 ) ≈ 2.96 e − 5 = 0.0000296 P(\text{抽到顺子})=3.28e^{-6}\times(13-5+1)\approx2.96e^{-5}=0.0000296 P(抽到顺子)=3.28e6×(135+1)2.96e5=0.0000296

只有 0.00296 % 0.00296\% 0.00296%!再看看同花。

按照上面的算法,我们很快的算出了同花的概率:

P ( 抽出同花 ) = 13 52 × 12 51 × 11 50 × 10 49 × 9 48 × 4 ≈ 0.00198 P(\text{抽出同花})=\frac{13}{52}\times\frac{12}{51}\times\frac{11}{50}\times\frac{10}{49}\times\frac{9}{48}\times4\approx0.00198 P(抽出同花)=5213×5112×5011×4910×489×40.00198

竟然还有 0.198 % 0.198\% 0.198%我说表哥歧视顺子吧。

有人会说:你是不是算错了啊。其实如果你认真思考一下也会发现顺子比同花确实难出,因为对于顺子来讲每张牌只有 4 4 4 张,总共也就 9 9 9 种情况,而同花的情况虽然小,但每种有 13 13 13 张!所以顺子确实比同花难出。(那我之前出过一次顺子是不是算我运气爆棚了啊)

后续

书接上回,话说我表哥听完我的一番言论之后那是一个哑口无言啊,感觉自己脸都丢了,于是很不服气,决定要再考考我,于是又问我:你算得出顺子,算得出同花,你能算得出同花顺和炸弹的概率吗?我:小 case,包在我身上。

首先我们来解决好算的:同花顺。同花顺其实就是要同花和顺子同时出现嘛,把他俩概率一乘不就完了?所以同花顺的概率就是:

P ( 同花顺 ) = 0.0000296 × 0.00198 ≈ 0.0000000586 P(\text{同花顺})=0.0000296\times0.00198\approx0.0000000586 P(同花顺)=0.0000296×0.001980.0000000586

突然我看到我的表哥眼神里闪过一丝不易察觉的笑意,我瞬间感觉事情没那么简单(当然现实中这是不可能的,都是节目效果,节目效果),于是我决定沿用上面的思路,从头开始。

假设我们先满足顺子,还是 1 , 2 , 3 , 4 , 5 1,2,3,4,5 1,2,3,4,5 吧,顺子的概率我们已经算过了,就是:

P ( 顺子 ) = 4 52 × 4 51 × 4 50 × 4 49 × 4 48 P(\text{顺子})=\frac{4}{52}\times\frac{4}{51}\times\frac{4}{50}\times\frac{4}{49}\times\frac{4}{48} P(顺子)=524×514×504×494×484

然后我们再满足同花。因为一个点数有四种花色,假设它们都是方块,那么都抽到方块的概率就是:

P ( 都是方块 ) = 1 4 × 1 4 × 1 4 × 1 4 × 1 4 P(\text{都是方块})=\frac{1}{4}\times\frac{1}{4}\times\frac{1}{4}\times\frac{1}{4}\times\frac{1}{4} P(都是方块)=41×41×41×41×41

把上下两个一结合,则得到了当 1 , 2 , 3 , 4 , 5 1,2,3,4,5 1,2,3,4,5 都是方块时的概率就是:

P ( 是 1 , 2 , 3 , 4 , 5 且都是方块 ) = 4 52 × 4 51 × 4 50 × 4 49 × 4 48 × 1 4 × 1 4 × 1 4 × 1 4 × 1 4 = 1 52 × 1 51 × 1 50 × 1 49 × 1 48 \begin{split} P(是 1,2,3,4,5 且都是方块) &=\frac{4}{52}\times\frac{4}{51}\times\frac{4}{50}\times\frac{4}{49}\times\frac{4}{48}\times\frac{1}{4}\times\frac{1}{4}\times\frac{1}{4}\times\frac{1}{4}\times\frac{1}{4}\\ &=\frac{1}{52}\times\frac{1}{51}\times\frac{1}{50}\times\frac{1}{49}\times\frac{1}{48} \end{split} P(1,2,3,4,5且都是方块)=524×514×504×494×484×41×41×41×41×41=521×511×501×491×481

而一共有四种花色,九种顺子,再根据乘法原理简化一下,就得到了:

P ( 同花顺 ) = 1 52 × 1 51 × 1 50 × 1 49 × 1 48 × 4 × 9 ≈ 0.000000115 P(\text{同花顺})=\frac{1}{52}\times\frac{1}{51}\times\frac{1}{50}\times\frac{1}{49}\times\frac{1}{48}\times4\times9\approx0.000000115 P(同花顺)=521×511×501×491×481×4×90.000000115

这概率跟上面的完全不沾边啊!(此时我的表哥一脸惊讶)

然后再算算炸弹的概率,假设是四个一,那么四个一同时出现的概率就是:

P ( 四个一 ) = 4 52 × 3 51 × 2 50 × 1 49 ≈ 0.00000369 P(\text{四个一})=\frac{4}{52}\times\frac{3}{51}\times\frac{2}{50}\times\frac{1}{49}\approx0.00000369 P(四个一)=524×513×502×4910.00000369

而一共有十三个点数,所以炸弹的概率就是:

P ( 炸弹 ) = 0.00000369 × 13 ≈ 0.000048 P(\text{炸弹})=0.00000369\times13\approx0.000048 P(炸弹)=0.00000369×130.000048

突然我又发现:这炸弹的概率比同花顺的大不少啊!我这表哥这规则是咋定的?(甚至比顺子的概率都高……)

所以说,出现同花的概率比炸弹大比顺子大比同花顺大,所以应该同花顺最大才对!

结语

从斗地主,到打麻将,从五子棋,到国际象棋,人类总是在不断地发明、创造一些方便又简单的游戏,而游戏中往往最特殊的情况我们就认为是概率最小的,然而,当我们从斗牛这个角度,用概率一步一步揭示它时,我们竟惊人的发现:游戏中特殊情况的概率竟比普通的还要大,人类的直觉在这儿不再是追寻答案的方向,而是阻挠我们去揭示真理的绊脚石。说到底,概率这个东西就一定是正确的吗?当数学家伯努利提出概率时,不也是靠着直觉去发现概率的吗?人类的直觉,最终打败了自己……

总结

通过这篇文章学到的:

  1. 加乘原理。
  2. 概率计算中的假设法。(先假定一种状态,再算它的概率,最后扩展到整个上面来,从而将一个复杂的问题简单化)
  3. 一种全新的扑克牌玩法。
  4. 讲故事。(开玩笑的啦)

感谢各位的支持,如果你有什么想算的事,可以私信联系我,我会尽我所能的去帮助你。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值