原题链接:AcWing 3748.递增子串
你的朋友约翰刚刚度假归来,他迫不及待地想要跟你分享他了解到的关于字符串的一个新性质。
他了解到,如果一个长度为 L 的大写字母构成的字符串 C,满足对于每对索引 i,j(1≤i<j≤L,索引编号 1∼L),位置 i 处的字符均小于位置 j 处的字符,则该字符串是严格递增的。
例如,字符串 ABC 和 ADF 是严格递增的,而字符串 ACC 和 FDA 则不是。
在教给你这个关于字符串的新性质后,他打算考一考你:
给定一个长度为 N 的字符串 S,请你计算对于每个位置 i (1≤i≤N),以该位置结束的最长严格递增子串的长度是多少?
输入格式
第一行包含整数 T
,表示共有 T
组测试数据。
每组数据占两行,第一行包含整数 N
,第二行包含一个长度为 N
的由大写字母构成的字符串 S
。
输出格式
每组数据输出一个结果,每个结果占一行。
结果表示为 Case #x: y1 y2 ... yn
,其中 x
为组别编号(从 1 开始),yi 为以位置 i 结束的最长严格递增子串的长度。
数据范围
全部数据:1≤T≤100。
测试点 1(小数据测试点):1≤N≤100。
测试点 2(大数据测试点):1≤N≤2×105。
输入样例:
2
4
ABBC
6
ABACDA
输出样例:
Case #1: 1 2 1 2
Case #2: 1 2 1 2 3 1
样例解释
对于测试数据 1,在位置 1、2、3 和 4 处结束的最长严格递增子串分别为 A
、AB
、B
、BC
。
对于测试数据 2,在位置 1∼6 处结束的最长严格递增子串分别为 A
、AB
、A
、AC
、ACD
、A
。
方法一:递推
思路:
对于s[i]的最长递增子串长度,和s[i-1]相关
- 当s[i] <= s[i-1]时,s[i]为1
- 当s[i] > s[i-1]时,s[i]为s[i-1] + 1
C++代码:
#include <iostream>
using namespace std;
const int maxn = 1e6;
int t, n;
char s[maxn];
int main(){
scanf("%d", &t);
for(int cases = 1; cases <= t; cases ++ ){
scanf("%d%s", &n, &s);
printf("Case #%d: ", cases);
for(int i = 0, tmp = 0; i < n; i ++ ){
if(i == 0 || s[i] > s[i - 1]) tmp++;
else tmp = 1;
if(i == 0) printf("%d", tmp);
else printf(" %d", tmp);
}
puts("");
}
return 0;
}