AcWing 3748.递增子串

原题链接:AcWing 3748.递增子串

你的朋友约翰刚刚度假归来,他迫不及待地想要跟你分享他了解到的关于字符串的一个新性质。

他了解到,如果一个长度为 L 的大写字母构成的字符串 C,满足对于每对索引 i,j(1≤i<j≤L,索引编号 1∼L),位置 i 处的字符均小于位置 j 处的字符,则该字符串是严格递增的。

例如,字符串 ABC 和 ADF 是严格递增的,而字符串 ACC 和 FDA 则不是。

在教给你这个关于字符串的新性质后,他打算考一考你:

给定一个长度为 N 的字符串 S,请你计算对于每个位置 i (1≤i≤N),以该位置结束的最长严格递增子串的长度是多少?

输入格式
第一行包含整数 T
,表示共有 T
组测试数据。

每组数据占两行,第一行包含整数 N
,第二行包含一个长度为 N
的由大写字母构成的字符串 S

输出格式
每组数据输出一个结果,每个结果占一行。

结果表示为 Case #x: y1 y2 ... yn ,其中 x
为组别编号(从 1 开始),yi 为以位置 i 结束的最长严格递增子串的长度。

数据范围
全部数据:1≤T≤100。
测试点 1(小数据测试点):1≤N≤100。
测试点 2(大数据测试点):1≤N≤2×105

输入样例:

2
4
ABBC
6
ABACDA

输出样例:

Case #1: 1 2 1 2
Case #2: 1 2 1 2 3 1

样例解释
对于测试数据 1,在位置 1、2、3 和 4 处结束的最长严格递增子串分别为 AABBBC

对于测试数据 2,在位置 1∼6 处结束的最长严格递增子串分别为 AABAACACDA


方法一:递推

思路:

对于s[i]的最长递增子串长度,和s[i-1]相关

  • 当s[i] <= s[i-1]时,s[i]为1
  • 当s[i] > s[i-1]时,s[i]为s[i-1] + 1

C++代码:

#include <iostream>
using namespace std;

const int maxn = 1e6;

int t, n;
char s[maxn];

int main(){
    scanf("%d", &t);
    
    for(int cases = 1; cases <= t; cases ++ ){
        scanf("%d%s", &n, &s);
        printf("Case #%d: ", cases);
        
        for(int i = 0, tmp = 0; i < n; i ++ ){
            if(i == 0 || s[i] > s[i - 1]) tmp++;
            else tmp = 1;
            
            if(i == 0) printf("%d", tmp);
            else printf(" %d", tmp);
        }
        puts("");
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值