n 皇后问题

57 篇文章 0 订阅
11 篇文章 0 订阅

皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

 

给定一个整数 n,返回所有不同的 皇后问题的解决方案。

每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

class Solution {
public:
    void fun(vector<vector<string>> &res,vector<string> &re, vector<bool> &tmp,vector<bool> tmp1,vector<bool> &tmp2,int p,int &n)
    {
        if(p>=n)
        {
            res.push_back(re);
            return ;
        }
        else
        {
            for(int j=0;j<n;j++)
            {
                int m=p;
                int r;
                r=p+j;
                int k=n-1+j-p;
                if(tmp[j]==false&&tmp1[r]==false&&tmp2[k]==false)
                {
                    re[m][j]='Q';
                    tmp[j]=true;
                    tmp1[r]=true;
                    tmp2[k]=true;
                    fun(res,re,tmp,tmp1,tmp2,p+1,n);
                    re[m][j]='.';
                    tmp[j]=false;
                    tmp1[r]=false;
                    tmp2[k]=false;
                }
            }
        }
    }
    vector<vector<string>> solveNQueens(int n) 
    {
        string a(n,'.');
        vector<string> re(n,a);
        vector<vector<string> > res;
        vector<bool> tmp(n,false);//说明某一列是否被占据
        vector<bool> tmp1(2*n-1,false);
        vector<bool> tmp2(2*n-1,false);
        fun(res,re,tmp,tmp1,tmp2,0,n);
        return res;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值