输入n个整数,输出其中最小的k个。
分析:如果全部排序找出最小的k个,则时间复杂度为O(nlgn)。而其实题目要求的是最小的k个数,并不要求顺序,更不要求对整个序列有序。
维护一个k个元素的最大堆,如果堆元素个数小于k个,则直接加入堆,如果堆元素个数等于k,则剩下的元素分别与堆顶元素比较,如果比堆顶元素还大,则不可能是最小的k个元素之一,如果比堆顶的元素小,则替换掉堆顶元素入堆,并重新调整堆,最后堆里的k个元素就是最小的k个元素。时间复杂度O(n+nlgk)
利用自己编写的堆操作处理。
#include <iostream>
#include <algorithm>
using namespace std;
void HeapAdjust(int a[], int i, int size)//调整堆
{
int lchild=2*i;//a从a[1]开始,否则lchild=2*i+1; rchild=2*i+2
int rchild=2*i+1;
int max=i;
if(i<=size/2)
{
if(lchild<=size && a[lchild]>a[max])
max=lchild;
if(rchild<=size && a[rchild]>a[max])
max=rchild;
if(max!=i)
{
swap(a[i],a[max]);
HeapAdjust(a, max, size);
}
}
}
void FindKLeastNumbers(int a[], int size, int k)
{
for(int i=k/2; i>=1; i--)//先调整前面k个元素为堆
HeapAdjust(a, i, k);
for(i=k+1; i<=size; i++)//从第k+1个元素开始,若其比堆顶元素大,则替换堆顶元素,并重新调整堆
{
if(a[1]>a[i])
a[1]=a[i];
HeapAdjust(a, 1, k);
}
}
void main()
{
int a[]={-999,10,7,5,12,456,32,75,8,1,0};//a从a[1]开始,即a[0]是无效的,不参加排序
int k;
cin>>k;
FindKLeastNumbers(a, 10, k);
for(int i=1; i<=k; i++)
cout<<a[i]<<" ";
cout<<endl;
}
利用STL里的multiset处理(set/multise内部结构是红黑树,t按照给定的排序规则排序,可以取到最大值或最小值)
#include <iostream>
#include <set>
#include <vector>
using namespace std;
void FindKLeastNumbers(vector<int>&data, multiset<int, greater<int> >& leastNumbers, int k )
{
leastNumbers.clear();
if(k==0 || data.size()<k)
return;
vector<int>::iterator iter=data.begin();
for(; iter!=data.end(); iter++)
{
if(leastNumbers.size()<k)//如果当前容器里的整数个数还没有达到k个,那么直接将当前整数插入到容器中
leastNumbers.insert(*iter);
else
{
multiset<int, greater<int> >::iterator iterFirst=leastNumbers.begin();//最大堆
if(*iter < *(leastNumbers.begin()))
{
leastNumbers.erase(iterFirst);
leastNumbers.insert(*iter);
}
}
}
}
int main()
{
int a[]={10,7,5,12,456,32,75,8,1,0};
vector<int> sorset(a,a+10);
multiset<int,greater<int> > multi;//最大堆
int k;
cin>>k;
FindKLeastNumbers(sorset, multi, k);
multiset<int,greater<int> >::iterator iter=multi.begin();
while(iter!=multi.end())
{
cout<<*iter<<" ";
iter++;
}
cout<<endl;
}
利用STL的multiset方便,但效率不及自己编写的堆操作。