输出1到最大的N位数

根据输入的数字n,顺序输出从1到最大的n位十进制数。本文介绍了三种算法:直接求最大数并循环输出,字符串表示大数避免溢出,以及使用全排列递归方法。在面试中,简洁的全排列递归算法更具优势。
摘要由CSDN通过智能技术生成

题目:输入数字n,按顺序输出从1最大的n10进制数。比如输入3,则输出123一直到最大的3位数即999

分析:这是一道很有意思的题目。看起来很简单,其实里面却有不少的玄机。

算法一:最直观的算法,求出最大的n位数是多少,然后一个循环打印。

void Print1ToMaxOfNDigits1(int n)
{
	int number=1;
	int i=0;
	while(i++<n)
		number*=10;

	for(i=1; i<number; i++)
		cout<<i<<" ";
}

 

算法二:字符串表示大数

当n很大时,算法一可能会溢出,所以考虑大数问题一般用数组或字符串。

用字符串表达数字的时候,最直观的方法就是字符串里每个字符都是’0’’9’之间的某一个字符,表示数字中的某一位。因为数字最大是n位的,因此我们需要一个n+1位字符串(最后一位为结束符号’/0’)。当实际数字不够n位的时候,在字符串的前半部分补零。这样,数字的个位永远都在字符串的末尾(除去结尾符号)。

首先我们把字符串中每一位数字都初始化为’0’。然后每一次对字符串表达的数字加1,再输出。因此我们只需要做两件事:一是在字符串表达的数字上模拟加法。另外我们要把字符串表达的数字输出。值得注意的是,当数字不够n位的时候,我们在数字的前面补零。输出的时候这些补位的0不应该输出。比如输入3的时候,那么数字98098的形式输出,就不符合我们的习惯了。

bool Increment(char* number)
{
	bool isOverflow=false;
	int nTakeOver=0;
	int nLength=strlen(number);
	
	for(int i=nLength-1; i>=0; i--)
	{
		int nSum=number[i]-'0'+nTakeOver;
		if(i==nLength-1)
			nSum++;
		
		if(nSum>=10)
		{
			if(i==0)
				isOverflow=true;
			else
			{
				nSum-=10;
				nTakeOver=1;
				number[i]='0'+nSum;
			}
		}
		else
		{
			number[i]='0'+nSum;
			break;
		}

	}
	
	return isOverflow;

}

void PrintNumber(char* number)
{
	bool isBeginning0=true;
	int nLength=strlen(number);

	for(int i=0; i<nLength; i++)
	{
		if(isBeginning0 && number[i]!='0')
			isBeginning0=false;

		if(!isBeginning0)
		{
			cout<<number[i];
		}
	}
	cout<<" ";
}

void Print1ToMaxOfNDigits2(int n)
{
	if(n<=0)
		return;
	char *number=new char[n+1];
	memset(number, '0', n);
	number[n]='\0';

	while(!Increment(number))
	{
		PrintNumber(number);

	}
	cout<<endl;
	delete[] number;
}


算法三:其实本题也就是求n位数的0~9的全排列

               第二种思路基本上和第一种思路相对应,只是把一个整型数值换成了字符串的表示形式。第二种思路虽然比较直观,但由于模拟了整数的加法,代码有点长。要在面试短短几十分钟时间里完整正确写出这么长代码,不是件容易的事情。接下来我们换一种思路来考虑这个问题。如果我们在数字前面补0的话,就会发现n位所有10进制数其实就是n个从09的全排列。也就是说,我们把数字的每一位都从09排列一遍,就得到了所有的10进制数。只是我们在输出的时候,数字排在前面的0我们不输出罢了。

              全排列用递归很容易表达,数字的每一位都可能是09中的一个数,然后设置下一位。递归结束的条件是我们已经设置了数字的最后一位。

 

 

void PrintNumber(char* number)
{
	bool isBeginning0=true;
	int nLength=strlen(number);

	for(int i=0; i<nLength; i++)
	{
		if(isBeginning0 && number[i]!='0')
			isBeginning0=false;

		if(!isBeginning0)
		{
			cout<<number[i];
		}
	}
	cout<<" ";
}

void Print1ToMaxOfNDigitsRecursively(char *number, int length, int index)
{
	if(index==length-1)
	{
		PrintNumber(number);
		return;
	}
	
	for(int i=0; i<10; i++)
	{
		number[index+1]=i+'0';
		Print1ToMaxOfNDigitsRecursively(number, length, index+1);
		
	}
}

void Print1ToMaxOfNDigit3(int n)
{
	if(n<0)
		return;
	
	char *number=new char[n+1];
	number[n]='\0';
	
	for(int i=0; i<10; i++)
	{
		number[0]=i+'0';
		Print1ToMaxOfNDigitsRecursively(number, n, 0);
	}
}

递归能够用很简洁的代码来解决问题。

感谢:http://blog.csdn.net/peasking_dd/article/details/6342984

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值