题目:从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的。2-10为数字本身,A为1,J为11,Q为12,K为13,而大小王可以看成任意数字。
我们需要把扑克牌的背景抽象成计算机语言。不难想象,我们可以把5 张牌看成由5 个数字组成的数组。大小王是特殊的数字,我们不妨把它们都当成0 ,这样和其他扑克牌代表的数字就不重复了。接下来我们来分析怎样判断5个数字是不是连续的。最直观的是,我们把数组排序。但值得注意的是,由于0可以当成任意数字,我们可以用0去补满数组中的空缺。也就是排序之后的数组不是连续的,即相邻的两个数字相隔若干个数字,但如果我们有足够的0可以补满这两个数字的空缺,这个数组实际上还是连续的。举个例子,数组排序之后为{0,1,3,4,5}。在1和3之间空缺了一个2,刚好我们有一个0,也就是我们可以它当成2去填补这个空缺。
于是我们需要做三件事情:把数组排序,统计数组中0的个数,统计排序之后的数组相邻数字之间的空缺总数。如果空缺的总数小于或者等于0的个数,那么这个数组就是连续的;反之则不连续。最后,我们还需要注意的是,如果数组中的非0数字重复出现,则该数组不是连续的。换成扑克牌的描述方式,就是如果一副牌里含有对子,则不可能是顺子。
其实在编程过程中,我们可以利用最大值和最小值的差来进行简单的数学性质判断即可。利用set的不重复性可以避免排序。
#include <iostream>
#include <set>
#include <vector>
using namespace std;
void GetMaxMin(const set<int>& setNum, int &nMax, int &nMin)//得到除0(大小王)外的最小值和最大值
{
nMin=13;
nMax=1;
set<int>::const_iterator iter=setNum.begin();
for(; iter!=setNum.end(); iter++)
{
if(*iter<nMin)
nMin=*iter;
if(*iter>nMax)
nMax=*iter;
}
}
int Del0Num(set<int>& setNum, const vector<int>& data)//将非零(大小王)元素加入set集合,set集合不能有重复元素的,如果有重复元素则舍掉,导致size变小
{
int Num0=0;
vector<int>::const_iterator iter=data.begin();
for(; iter!=data.end(); iter++)
{
if(*iter!=0)
setNum.insert(*iter);
else
Num0++;
}
return Num0;
}
bool IsContinuous(vector<int> data)
{
int nMax=0, nMin=0;
set<int> setNum;
int num0=Del0Num(setNum, data);
if(num0+setNum.size()<data.size())//set集合不能有重复元素的,如果有重复元素则舍掉,导致size变小
return false;
GetMaxMin(setNum, nMax, nMin);
return nMax-nMin<=data.size()-1;//如果最大值和最小值的差小于向量size减1,则满足连续性,0即大小王可以填补中间的空缺。
}
int main()
{
vector<int> vec;
for(int i=0; i<5; i++)
{
int temp;
cin>>temp;
vec.push_back(temp);
}
cout<<IsContinuous(vec)<<endl;
return 0;
}