题目描述新学期伊始,适逢顿顿书城有购书满 x 元包邮的活动,小 P 同学欣然前往准备买些参考书。 试帮助小 P 计算,最终选购哪些书可以在凑够 x 元包邮的前提下花费最小? 输入格式从标准输入读入数据。 输入的第一行包含空格分隔的两个正整数 n 和 x,分别表示购物车中图书数量和包邮条件。 接下来输入 n 行,其中第 i 行(1≤i≤n)仅包含一个正整数 ai,表示购物车中第 i 本书的价格。输入数据保证 n 本书的价格总和不小于 x。 输出格式输出到标准输出。 仅输出一个正整数,表示在满足包邮条件下的最小花费。 |
这道题,我刚开始是使用DFS暴力递归来枚举所有可能的情况,不出我所料,只得了70分;以下是我得分70的代码:
# include <iostream>
# include <algorithm>
# include <vector>
# define maxn 300010
using namespace std;
int n, x;
int minx = maxn;
vector<int>book;
int visit[35] = { 0 };
void DFS(int sum, int t)
{
if (sum >= x) {
minx = min(minx, sum);
return;
}
for (int i = t; i < book.size(); i++) {
if (visit[i] == 0) {
visit[i] = 1;
DFS(sum + book[i], i);
visit[i] = 0;
}
}
}
int main()
{
cin >> n >> x;
int y;
for (int i = 0; i < n; i++) {
cin >> y;
book.push_back(y);
}
DFS(0,0);
cout << minx << endl;
return 0;
}
之后,我开始思考更好的解决方案。既然不能通过枚举所有的情况来找到答案 ,那肯定是有一种途径来找到最优解,所以自然的联想到了dp(动态规划);我们再来看一下这个问题,寻找超过包邮条件x的最小数字组合。可以转化为先求书的总价sum,再用sum减去x得y,问题就变成了寻找不超过y(达到包邮条件)的最大数字组合,再用总价减去这个数字组合,即可得到最终答案。寻找不超过y的最大数字组合,这种类型就是典型的背包问题。这里,我们来简单回顾一下背包问题的几个核心思想:
子问题:当前背包容量j,前i个物品最佳组合对应的价值
递推关系式:v[i]:各商品价值 w[i]:各商品重量
j<w[i]: f[i][j]=f[i-1][j]
j>w[i]: f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+v[i])
以样例1为例:
4 100
20
90
60
60
i/j | 0 | ``` | 20 | ``` | 60 | ``` | 90 | ``` | 130 |
0 | 0 | ``` | 0 | ``` | 0 | ``` | 0 | ``` | 0 |
1(20) | 0 | ``` | 20 | ``` | 20 | ``` | 20 | ``` | 20 |
2(90) | 0 | ``` | 20 | ``` | 20 | ``` | 90 | ``` | 110 |
3(60) | 0 | ``` | 20 | ``` | 60 | ``` | 90 | ``` | 110 |
4(60) | 0 | ``` | 20 | ``` | 60 | ``` | 90 | ``` | 120 |
其中,130就是用书的总价230减去达到包邮条件所需的100得到的,然后我们要寻找不超过130的最大数字组合,类比一下背包问题,130就相当于背包的容量。
以下是得分100的代码:
# include <iostream>
# include <algorithm>
# define maxn 300010
using namespace std;
int n, x;
int v[40] = { 0 };
int f[40][maxn] = { {0} };
int main()
{
cin >> n >> x;
int sum = 0;
for (int i = 1; i <= n; i++) {
cin >> v[i];
sum += v[i];
}
int y = sum - x;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= y; j++) {
f[i][j] = f[i - 1][j];//背包问题的核心公式
if (j >= v[i]) {
f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + v[i]);//背包问题的核心公式
}
}
}
int r = sum - f[n][y];
cout << r << endl;
return 0;
}
以上是我的个人见解,欢迎大家观看指正。