sklearn模型过拟合、欠拟合分析,learning_curve绘制学习曲线

以iris数据集合SVM分类器为例,使用sklearn的learning_curve函数绘制分类器的学习曲线,并根据学习曲线判断模型的状态,是欠拟合还是过拟合。


1、加载iris数据集

2、划分训练集和测试集


3、设置超参数C=0.05, gamme=0.1训练SVM模型

交叉验证结果准确率0.86,结果好像还不错!!!

4、使用learning_curve绘制分类器学习曲线

上图中训练准确率和验证准确率同步变化,且准确率没有太大差距,但是在训练集上的准确率只有75%左右,表明模型现在可能处于欠拟合的状态。


5、增加超参数C=10, gamma=1,降低对模型的约束,训练SVM分类器

修改超参数后,交叉验证结果95%,说明模型的学习能力变强了,但是现在有可能已经发生了过拟合!!!

6、使用learning_curve绘制分类器学习曲线

学习曲线显示,随着训练集的增大,训练集上的准确率一直是100%,验证集的准确率最终稳定在93%左右,模型在训练集合验证集上的结果相差较大,可能已经发生了过拟合。


7、设置超参数C=5, gamma=0.1,增强对模型的约束,训练SVM分类器

现在交叉验证的结果显示,在验证集上的分类准确率为98%,和第5步一样,现在也可能发生了过拟合的情况,绘制学习曲线看一下!!!

8、使用learning_curve绘制分类器学习曲线

学习曲线看上去还不错,分类器在训练集和验证集上的准确率最终都稳定到了相当的数值,且和前一步交叉验证得到的准确率也相当,使用现在这个模型在测试集上试试看!!!


9、模型在测试集上的表现

模型在测试集上的预测准确率在96%,与之前交叉验证的结果以及学习曲线的最终收敛结果相当,说明模型在未知数据上的泛化效果还不错!!!

在Python中,`sklearn.learning_curve`模块已经被弃并从Scikit-learn库中移除。该模块在Scikit-learn版本0.20之后不再可用。如果你使用的是较新的Scikit-learn版本,你可以考虑使用`sklearn.model_selection`模块中的`learning_curve`函数来替代。 `learning_curve`函数可以用于绘制学习曲线,帮助我们分析模型的训练和测试误差随着训练样本数量的变化而变化的情况。它可以帮助我们判断模型是否存在拟合过拟合的问题。 如果你想使用`learning_curve`函数,你需要先安装Scikit-learn库,并导入`sklearn.model_selection`模块。下面是一个示例代码: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.model_selection import learning_curve from sklearn.svm import SVC # 加载数据集 digits = load_digits() X, y = digits.data, digits.target # 定义支持向量机分类器 clf = SVC() # 绘制学习曲线 train_sizes, train_scores, test_scores = learning_curve(clf, X, y, cv=5) # 计算平均值和标准差 train_mean = np.mean(train_scores, axis=1) train_std = np.std(train_scores, axis=1) test_mean = np.mean(test_scores, axis=1) test_std = np.std(test_scores, axis=1) # 绘制学习曲线图 plt.figure() plt.plot(train_sizes, train_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_mean, 'o-', color="g", label="Cross-validation score") plt.fill_between(train_sizes, train_mean - train_std, train_mean + train_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_mean - test_std, test_mean + test_std, alpha=0.1, color="g") plt.xlabel("Training examples") plt.ylabel("Score") plt.legend(loc="best") plt.show() ``` 这是一个简单的示例,你可以根据自己的需求进行修改和扩展。希望对你有帮助!
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值