learning_curve绘制
- 原理
- 利用不同数目的数据对模型进行训练,返回不同数目的数据训练得到模型下的训练数据集大小训练集分数、测试集分数
- 导入模块
- from sklearn.model_selection import learning_curve
- 参数
- train_sizes, train_scores, test_scores = learning_curve(estimator, X, y
- ,cv=cv,n_jobs=n_jobs)
- estimator
- 实例化后的分类器
- x
- 数据特征
- y
- 数据标签
- cv交叉验证的模型
- cv = ShuffleSplit(n_splits=50, test_size=0.2, random_state=0)
- n_jobs
- 进行计算的cpu
- train_sizes, train_scores, test_scores = learning_curve(estimator, X, y
- 定义绘制学习曲线函数
- [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sJbtMv3E-1683862015895)(data/user-data/509837/images/b51d700d9f0f496970fe4725303cbfe0.png)]
- 将模型代入循环中绘制出学习曲线
- [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rvCvy3My-1683862015897)(data/user-data/509837/images/54ee1d0fac3392878637aaf78c3b4a89.png)]