利用sklearn自带模块绘制学习曲线

学习曲线用于分析模型在不同数据量下的表现。通过`learning_curve`函数,我们可以用不同数量的数据训练模型,获取训练集和测试集的分数。该函数接受分类器实例、特征数据`X`、标签数据`y`以及交叉验证方法`cv`(如`ShuffleSplit`),并可指定`n_jobs`来控制CPU的使用。绘制学习曲线有助于识别过拟合或欠拟合情况。
摘要由CSDN通过智能技术生成

learning_curve绘制

  • 原理
    • 利用不同数目的数据对模型进行训练,返回不同数目的数据训练得到模型下的训练数据集大小训练集分数、测试集分数
  • 导入模块
    • from sklearn.model_selection import learning_curve
  • 参数
    • train_sizes, train_scores, test_scores = learning_curve(estimator, X, y
      • ,cv=cv,n_jobs=n_jobs)
    • estimator
      • 实例化后的分类器
    • x
      • 数据特征
    • y
      • 数据标签
    • cv交叉验证的模型
      • cv = ShuffleSplit(n_splits=50, test_size=0.2, random_state=0)
    • n_jobs
      • 进行计算的cpu
  • 定义绘制学习曲线函数
    • [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sJbtMv3E-1683862015895)(data/user-data/509837/images/b51d700d9f0f496970fe4725303cbfe0.png)]
  • 将模型代入循环中绘制出学习曲线
    • [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rvCvy3My-1683862015897)(data/user-data/509837/images/54ee1d0fac3392878637aaf78c3b4a89.png)]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值