计算机毕设之基于数据挖掘的学生成绩分析系统

计算机毕设

第一篇 基于数据挖掘的学生成绩分析系统

前言

今天介绍的是:基于数据挖掘的学生成绩分析系统


一、数据上传

在上传数据的时候就进行简单的数据清洗

在这里插入图片描述

通过前端传来的值 选择性的进行数据清洗

def clean_data(df,integer_value):
    # 检查是否有缺失值
    has_nan = df.isnull().any().any()

    if integer_value == 1:
        # 不处理
        pass
    elif integer_value == 2:
        if has_nan:
            # 去除缺省值
            df = df.dropna()
    elif integer_value == 3:
        if has_nan:
            # 中位数替代缺省值
            for col in df.columns:
                median_value = df[col].median(skipna=True)
                df[col].fillna(median_value, inplace=True)
    elif integer_value == 4:
        if has_nan:
            # 平均数替代缺省值
            for col in df.columns:
                mean_value = df[col].mean(skipna=True)
                df[col].fillna(mean_value, inplace=True)
    return df

二、数据可视化

1.用柱状图进行可视化

在这里插入图片描述

2.用饼状图进行可视化

在这里插入图片描述
后端代码示例

def dataAnalyst():
    conn = sqlite3.connect('local.db')
    query = 'SELECT MathScore, ReadingScore, WritingScore FROM students'
    df = pd.read_sql_query(query, conn)
    conn.close()
    def grade_distribution(scores):
        bins = [59, 70, 80, 90, 100]
        labels = ['不合格', '合格', '良好', '优秀']
        categories = pd.cut(scores, bins, labels=labels, right=False)
        return categories.value_counts().sort_index().tolist()

    result = {}
    for column in ['MathScore', 'ReadingScore', 'WritingScore']:
        result[column+'_hist_y_data'] = grade_distribution(df[column])
    return result

三、模型训练

在这里插入图片描述

四、模型记录

训练的模型数据都会保存在模型记录里面,方便我们选择最好的模型

在这里插入图片描述

五、模型使用

在这里插入图片描述

总结

希望对大家有帮助!!!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值