lcDFS1 深度优先遍历1[记忆化搜索]

21 篇文章 0 订阅

1 深度优先遍历

最常见的优化:

  • 1 记忆化搜索: 使用hash记录遍历起点对应的值,然后直接从hash中获得,避免重复计算

  • 2 常见算法:
    对于欧拉图和半欧拉图算欧拉路径:hierholzer算法

2 例子

0332HierholzerToFindEulerPath 找欧拉路径

1 题目

https://leetcode-cn.com/problems/reconstruct-itinerary/

2 解题思路

hierholzer算法参考:https://www.geeksforgeeks.org/hierholzers-algorithm-directed-graph/
https://blog.csdn.net/qq_34292517/article/details/105463522?utm_medium=distribute.pc_relevant.none-task-blog-2defaultbaidujs_title~default-0.pc_relevant_default&spm=1001.2101.3001.4242.1&utm_relevant_index=3

  • 1 自己的思路:
    • 1.1 主要是使用hierholzer算法找到欧拉路径,由于需要字典序,那么我们邻接表则使用优先队列来存储
  • 2 hierholzer算法
    • 2.1 dfs,当一个节点没邻居了(因为每访问一条边就删除一条边)
    • 2.2 将节点入栈reversePath
    • 2.3 dfs完成,reversePath则为逆序栈
  • 3 欧拉图等等理解:参考上述第二篇文章

基本概念

圈:任选图中一个顶点为起点,沿着不重复的边,经过不重复的顶点为途径,之后又回到起点的闭合途径称为圈。

欧拉路径:通过图中所有边一次且仅一次遍历所有顶点的路径称为欧拉(Euler)路径;

欧拉回路:通过图中所有边一次且仅一次行遍所有顶点的回路称为欧拉回路;

欧拉图:具有欧拉回路的图称为欧拉图;

半欧拉图:有欧拉路径但没有欧拉回路的图称为半欧拉图。

欧拉图与半欧拉图的判定:

G是欧拉图 ⇔ G中所有顶点的度均为偶数 ⇔ G是若干个边不重的圈的并。

G是半欧拉图 ⇔ G中恰有两个奇数度顶点。

class Solution {
public:
    
    int edgeNums = -1;
    int nodeNums = -1;
    unordered_map<string, int> nodes;
    unordered_map<int, string> toStr;
    vector<string> findItinerary(vector<vector<string>>& tickets) {
        // map str to int according to dictionary order
        set<string, std::less<string>> airports;
        for(auto& vec : tickets) {
            airports.insert(vec[0]);
            airports.insert(vec[1]);
        }

        int i = 0;
        for(auto& str : airports) {
            toStr[i] = str;
            nodes[str] = i++;
        }
        
        // construct the adj table
        int nodeNums = airports.size();
        int edgeNums = tickets.size();
        // vector<vector<int>> table(nodeNums, vector<int>(0));
        vector<priority_queue<int, vector<int>, greater<int>>> table(nodeNums, priority_queue<int, vector<int>, greater<int>>());
        for(auto& vec : tickets) {
            table[nodes[vec[0]]].push(nodes[vec[1]]);
        }

        vector<string> strRes;
        vector<priority_queue<int, vector<int>, greater<int>>> tableTmp(table);
        vector<int> res;
        dfs(nodes["JFK"], tableTmp, res);
        reverse(res.begin(), res.end());
        for(auto& node : res) {
            strRes.push_back(toStr[node]);
        }

        return strRes;
    }

    // 
    void dfs(int st, vector<priority_queue<int, vector<int>, greater<int>>>& map, vector<int>& res) {
        
        while(!map[st].empty()) {
            int nextSt = map[st].top();
            map[st].pop();
            // cout << "from to: " << toStr[st] << " -> " << toStr[nextSt] << endl;
            dfs(nextSt, map, res);
        }
        res.emplace_back(st);
    }
};

0753crackSafe 破解保险箱(变形欧拉路)

1 题目

https://leetcode-cn.com/problems/freedom-trail/
https://leetcode-cn.com/problems/reconstruct-itinerary/

2 解题思路

  • 1 对于 n = 3, k = 3, 我们的图的节点为(k ^ (n-1)个): 00, 01, …, 22, 然后每个节点都有k个边,这样一共是k^n个边
    • 1.1 那么如何认为走过一条边就是尝试一次密码呢?
    • 1.2 比如: 00的邻接顶点为0,1,2, 那么当dfs访问从00节点到其邻接点分别组成的边为000,001,002,则他们对应的下一跳就为: 00,01,02,也就是取当前dfs访问得到的边的后n-1位
  • 2 hierholzer算法
    • 2.0 选择一个节点开始dfs
    • 2.1 当一个节点没邻居了
    • 2.2 将节点入栈reversePath
    • 2.3 dfs完成,reversePath则为逆序栈
class Solution {
public:
    int n = -1;
    int k = -1;
    vector<char> kVec;
    string crackSafe(int n, int k) {
        // since for each bit, there a k's possiblity
        // so the final str's length = k^n
        // consider a G, vertices are {0, 1, ..., k-1}
        // for each edge: vi -> vj(vi could equal vj), 
        // there shall be n-1's such same edge
        // we just need a way to walk through the G
        // try hierholzer algo
        if(1 == n) {
            string tmpRes = "";
            for(int i = 0; i < k; ++i) {
                tmpRes.push_back(i + '0');
            }
            return tmpRes;
        }

        this->k = k;
        this->n = n;
        for(int i = 0; i < k; ++i) {
            kVec.push_back(i + '0');
        }

        unordered_set<string> seen;
        unordered_map<string, vector<char>> graph;
        buildGraph("", n - 1, graph);
        
        string stStr(n-1, '0');
        
        string res = "";
        hierholzer(stStr, graph, res, seen);
        
        // when n=3, k=3, we start from "00" node, so we add reverse of "00" to the end of the res, cause hierholzer produce a reverse eular path (start from "00", end to "00")
        res += stStr;
        return res;
    }

    void buildGraph(string tmp, int leftBitNum, unordered_map<string, vector<char>>& graph) {
        if(0 == leftBitNum) {
            // cout << "len: " << leftBitNum << "finish node: " << tmp << endl;
            graph[tmp] = kVec;
            return;
        }

        for(int st = 0; st < k; ++st) {
            buildGraph(tmp + kVec[st], leftBitNum-1, graph);
        }
    }

void hierholzer(
    string st, 
    unordered_map<string, vector<char>>& graph, 
    string& res, 
    unordered_set<string>& seen) {
        // cout << "doing : " << st << endl;
        bool hasOut = false;
        for(int edIdx = 0; edIdx < k; ++edIdx) {
            string curEdge(st);
            curEdge.push_back(graph[st][edIdx]);
            
            if(seen.count(curEdge)) {
                continue;
            }
            
            hasOut = true;
            string nextSt = curEdge.substr(1);
            // cout << "st -> nextSt: " << st << " -> " << nextSt << endl;
            seen.insert(curEdge);
            // cout << "see edge: " << curEdge << endl; 
            hierholzer(nextSt, graph, res, seen); // post order
            res.push_back(graph[st][edIdx]); // hierholzer
        }
    }

};

0514wayOfFreedom 自由之路

1 题目

https://leetcode-cn.com/problems/freedom-trail/

2 解题思路

  • 1 首先考虑到,key中的每一个字符,环的所有同种字符的所有位置都是遍历的可能
    • 1.1 于是使用dfs去尝试对于key的一个字符的每个位置即可,然后讲每个位置得到的结果比较取一个最小值
    • 1.2 1.1中提到的算法肯定是有问题的,比如key: abc, 然后ring: aaabbbccc
      • 会出现哪种情况呢? ring中a的三个位置都会搜索,然后对于剩下的key和ring bc以及bbbccc会由于a有三个位置而搜索了三遍,所以需要记忆化搜索
    • 1.3 使用memo[i][j]记录: key[i:]和ring[j:]对应的最小步数即可
  • 2 经过1的思考,也较为容易知道,本题目,动态规划也能做
  • 3 写代码的教训,由于我将dfsmemo写好,然后调用dfs的地方也改了,但是依然超时?
    • 3.1 因为dfsmemo递归调用不是自身,而是dfs函数,所以务必及时清理不需要的代码
class Solution {
public:

    int ringLen = -1;
    int keyLen = -1;
    int findRotateSteps(string ring, string key) {
        unordered_map<char, vector<int>> ringMap;
        ringLen = ring.length();
        keyLen = key.length();
        int pos = 0;
        for(auto& c : ring) {
            if(0 == ringMap.count(c)) {
                vector<int> tmp = {pos};
                ringMap[c] = tmp;         
            } else {
                ringMap[c].push_back(pos);
            }
            ++pos;
        }
        vector<vector<int>> memo(keyLen, vector<int>(ringLen, INT_MAX));
        return dfsMemo(0, 0, ringMap, key, memo);
    }

    // no memo dfs, too slow
    int dfs(int tar, int markPos, unordered_map<char, vector<int>>& ringMap, string& key) {
        if(tar == key.length()) {
            return 0;
        }

        int minStep = INT_MAX;
        // for cur key char, try ervery possible way on the ring
        for(auto tarPos : ringMap[key[tar]]) {
            int curStep = minDis(tarPos, markPos); // rotate
            curStep += 1; // write

            minStep = min(
                minStep,
                dfs(tar + 1, tarPos, ringMap, key) + curStep
            );
        }
        return minStep;
    }

    // memo version
    int dfsMemo(int tar, int markPos, unordered_map<char, vector<int>>& ringMap, string& key,
    vector<vector<int>>& memo) {
        if(tar == key.length()) {
            return 0;
        }

        if(INT_MAX != memo[tar][markPos]) {
            return memo[tar][markPos];
        }

        // for cur key char, try ervery possible way on the ring
        for(auto tarPos : ringMap[key[tar]]) {
            int curStep = minDis(tarPos, markPos); // rotate
            curStep += 1; // write
            memo[tar][markPos] = min(
                memo[tar][markPos],
                dfsMemo(tar + 1, tarPos, ringMap, key, memo) + curStep
            );
        }
        // cout << "memo ing: " << tar << ", " << markPos << ": " << memo[tar][markPos] << endl;
        return memo[tar][markPos];
    }

    int minDis(int tarPos, int markPos) {
        int gt = max(tarPos, markPos);
        int lt = min(tarPos, markPos);
        return min(gt - lt, lt + ringLen - gt);
    }
};

0968minCameraCover 监控二叉树

1 题目

https://leetcode-cn.com/problems/binary-tree-cameras/submissions/

2 解题思路

  • 1 首先得在思考的过程中,理解改题目的本质就是,
    • 1.1 在dfs的过程中,在每个节点可以放置或者不放置相机,重要的是,如何去体现放置还是不放置相机
    • 1.2 如何提现呢?很简单,比如root放置,然后你想让它的两个子节点都不放置,那么直接递归调用两个子节点的后代即可,具体看代码即可
    • 1.3 那么对于每个节点,有几种放置相机的可能呢?
      • 一共三种,要么root,要么left,要么right,然后取最小代价即可,这里以选择left子节点仔细说明:
        // choosing: right 
        int tmpRightCover = min(
            // r的监控器对r的两个子节点都有监控作用,于是直接去计算两个子节点的子节点
            1 + minCameraCover(r_rll) + minCameraCover(r_rlr) + minCameraCover(r_rrl) + minCameraCover(r_rrr) + minCameraCover(r_l),
            min(
                // r的监控器对r的两个子节点中的右孩子有监控作用,于是计算方式变为算右孩子两个子节点加上左侧节点
                // partly ignore, will not put cam on r_rr, may on r_r
                1 + minCameraCover(r_rrl) + minCameraCover(r_rrr) + minCameraCover(r_rl) + minCameraCover(r_l),
                // r的监控器对r的两个子节点中的左孩子有监控作用,于是计算方式变为算左孩子两个子节点加上右侧节点
                // partly ignore, will not put cam on r_rl, may on r_l
                1 + minCameraCover(r_rll) + minCameraCover(r_rlr) + minCameraCover(r_rr) + minCameraCover(r_l)
            )
        );
  • 2 优化思路:
    • 2.1 同一层递归里面,相同函数名不要反复出现,用临时变量存储以加速
    • 2.2 使用hash存储对应的节点的最小监控值,如果能在hash命中就不用反复计算
    • 2.3 优先计算小规模,然后计算大规模
  • 3 关于为什么需要hash来避免反复计算:
    • 3.1 看例子:
      [0,null,0,null,0,null,0,null,0,null,0,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,0,null,null,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null,0,null]
    • 3.2 也就是单链表,你会发现,到达第4个节点,可以有两种监控方式,那么说明第4个节点的计算会重复2次,于是需要记忆化搜索
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int level = 0;
    unordered_map<TreeNode* , int> memo;
    int minCameraCover(TreeNode* root) {
        ++level;
        if(nullptr == root) {
            return 0;
        }

        if(nullptr == root->left && nullptr == root->right) {
            return 1;
        }
        
        // dp:
        TreeNode* r_l = root->left;
        TreeNode* r_r = root->right;

        TreeNode* r_ll = getL(r_l);
        TreeNode* r_lr = getR(r_l);
        TreeNode* r_rl = getL(r_r);
        TreeNode* r_rr = getR(r_r);

        TreeNode* r_lll = getL(r_ll);
        TreeNode* r_llr = getR(r_ll);
        TreeNode* r_lrl = getL(r_lr);
        TreeNode* r_lrr = getR(r_lr);
        TreeNode* r_rll = getL(r_rl);
        TreeNode* r_rlr = getR(r_rl);
        TreeNode* r_rrl = getL(r_rr);
        TreeNode* r_rrr = getR(r_rr);
 
        int cover_r_lll = getFromMemo(r_lll);
        int cover_r_llr = getFromMemo(r_llr);
        int cover_r_lrl = getFromMemo(r_lrl);
        int cover_r_lrr = getFromMemo(r_lrr);
        int cover_r_rll = getFromMemo(r_rll);
        int cover_r_rlr = getFromMemo(r_rlr);
        int cover_r_rrl = getFromMemo(r_rrl);
        int cover_r_rrr = getFromMemo(r_rrr);

        int cover_r_ll = getFromMemo(r_ll);
        int cover_r_lr = getFromMemo(r_lr);
        int cover_r_rl = getFromMemo(r_rl);
        int cover_r_rr = getFromMemo(r_rr);

        int cover_r_l = getFromMemo(r_l);
        int cover_r_r = getFromMemo(r_r);

        // // choosing: root
        // int tmpRootCover = min(
        //     // min(
        //         // do not ignore
        //     1 + minCameraCover(r_ll) + minCameraCover(r_lr) + minCameraCover(r_rl) + minCameraCover(r_rr),
        //         // 1 + minCameraCover(r_l) + minCameraCover(r_r)
        //     // ),
        //     // partly ignore root choosen
        //     min(
        //         1 + minCameraCover(r_ll) + minCameraCover(r_lr) + minCameraCover(r_r), 
        //         1 + minCameraCover(r_rl) + minCameraCover(r_rr) + minCameraCover(r_l)
        //     )
        // );

        int tmpRootCover = min(
            1 + cover_r_ll + cover_r_lr + cover_r_rl + cover_r_rr,
            min(
                1 + cover_r_ll + cover_r_lr + cover_r_r,
                1 + cover_r_rl + cover_r_rr + cover_r_l
            )
        );

        // // choosing: right 
        // int tmpRightCover = min(
        //     // don't ignore, will not put cam on r_rl, r_rr
        //     1 + minCameraCover(r_rll) + minCameraCover(r_rlr) + minCameraCover(r_rrl) + minCameraCover(r_rrr) + minCameraCover(r_l),
        //     min(
        //         // partly ignore, will not put cam on r_rr, may on r_r
        //         1 + minCameraCover(r_rrl) + minCameraCover(r_rrr) + minCameraCover(r_rl) + minCameraCover(r_l),
        //         // partly ignore, will not put cam on r_rl, may on r_l
        //         1 + minCameraCover(r_rll) + minCameraCover(r_rlr) + minCameraCover(r_rr) + minCameraCover(r_l)
        //     )
        // );

        int tmpRightCover = min(
            1 + cover_r_rll + cover_r_rlr + cover_r_rrl + cover_r_rrr + cover_r_l,
            min(
                1 + cover_r_rrl + cover_r_rrr + cover_r_rl + cover_r_l,
                1 + cover_r_rll + cover_r_rlr + cover_r_rr +  cover_r_l
            )
        );

        // // choosing: left
        // int tmpLeftCover = min(
        //     1 + minCameraCover(r_lll) + minCameraCover(r_llr) + minCameraCover(r_lrl) + minCameraCover(r_lrr) + minCameraCover(r_r),
        //     min(
        //         1 + minCameraCover(r_ll) + minCameraCover(r_lrl) + minCameraCover(r_lrr) + minCameraCover(r_r),
        //         1 + minCameraCover(r_lr) + minCameraCover(r_lll) + minCameraCover(r_llr)  + minCameraCover(r_r)
        //     )
        // );
        int tmpLeftCover = min(
            1 + cover_r_lll + cover_r_llr + cover_r_lrl + cover_r_lrr + cover_r_r,
            min(
                1 + cover_r_ll + cover_r_lrl + cover_r_lrr + cover_r_r,
                1 + cover_r_lr + cover_r_lll + cover_r_llr + cover_r_r
            )
        );

        return min(tmpRootCover, min(tmpLeftCover, tmpRightCover));
    }

    TreeNode* getR(TreeNode* root) {
        if(nullptr == root) {
            return nullptr;
        } else {
            return root->right;
        }
    }
    TreeNode* getL(TreeNode* root) {
        if(nullptr == root) {
            return nullptr;
        } else {
            return root->left;
        }
    }

    int getFromMemo(TreeNode* root) {
        if(memo.end() == memo.find(root)) {
            memo[root] = minCameraCover(root);
        } 
        return memo[root];
    }
        
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值