大家好,我是程序员晓晓
最近总是有小伙伴问如何用Stable Diffusion 改变人物的头发颜色,那今天这篇文章就教大家如何快速方便的更改头发颜色。
这里我们先统一一下公共设置参数。
-
正向提示词:a super beautiful Chinese girl,very delicate features,long hair,(red hair:1.2),delicate skin,big eyes,white sweater,necklace,standing in the street,upper body,
-
反向提示词: loli,nsfw,logo,text,badhandv4,EasyNegative,ng_deepnegative_v1_75t,rev2-badprompt,verybadimagenegative_v1.3,negative_hand-neg,mutated hands and fingers,poorly drawn face,extra limb,missing limb,disconnected limbs,malformed hands,ugly,
-
大模型:majicMIX realistic 麦橘写实 v7
-
采样器:DPM++ 2M Karras
-
采样迭代步数:30
-
CFG:7
-
图片宽高:512*768
我们需要将下面的图片中美女的头发变成红色
方法1:使用ControlNet的Canny模型
我们先看一下ControlNet参数设置
相关参数设置如下:
-
控制类型:选择"Canny(硬边缘)"
-
预处理器:canny
-
模型:control_v11p_sd15_canny
-
控制权重:1
修改提示词:添加关键词(red hair:1.2)
a super beautiful Chinese girl,very delicate features,long hair,(red hair:1.2),delicate skin,big eyes,white sweater,necklace,standing in the street,upper body,
生成的图片效果如下:
相关说明:
(1)Canny控制器模型主要用于提取图片的轮廓,因此可以大致保持图片的整体风格和人物造型,再结合提示词,可以改变人物的头发颜色,但是人脸就无法保持一致了。
(2)提示词中添加指定的头发颜色,在AI绘画时有时候并不一定只会作用于头发,也有可能作用于衣服或者其他元素。在AI绘画时这种问题是比较常见的,可以多次抽签获取自己满意的图片。
方法2:使用ControlNet的Tile模型
我们先看一下ControlNet参数设置。
相关参数设置如下:
-
控制类型:选择"Tile/Blur(分块/模糊)"
-
预处理器: tile_resample
-
模型:control_v11f1e_sd15_tile
-
控制权重:1
修改提示词:添加关键词(red hair:1.2)
a super beautiful Chinese girl,very delicate features,long hair,(red hair:1.2),delicate skin,big eyes,white sweater,necklace,standing in the street,upper body,
生成的图片效果如下:
相关说明:这个主要是利用了tile模型可以修改图片的局部细节的功能,但是tile模型的实现机制是对图片进行重绘,并不是局部修改,所以图片还是有些细微的变化,当然人脸也无法保持一致了。
方法3:使用ControlNet的Recolor模型
我们先看一下ControlNet参数设置。
相关参数设置如下:
-
控制类型:选择"Recolor(重上色)"
-
预处理器: recolor_luminance
-
模型:ioclab_sd15_recolor
-
控制权重:1
修改提示词:red hair (只需要指定头发的颜色即可)
生成的图片效果如下:
相关说明:Recolor模型的实现方式是先使用预处理提取原图片的黑白图片,然后再识别图片的各个区域进行上色处理,可以实现人脸地一致,头发颜色也正确修改,但是对整体图片的颜色风格还是有一定的影响。
方法4:使用Segment Anything插件来局部重绘
由于Segment Anything插件操作起来有些人感觉比较麻烦,关于该插件的使用更多推荐使用ComfyUI工作流的方式,这里我们推荐一个可以直接换发型的ComfyUI工作流。
网站地址:https://www.esheep.com/workflow#slug=32cb5040cf8b774f1fb189794ec06f30
可以直接使用,也可以调整模型和参数配置和上面的配置一样。下面是我将原工作流调整参数和我们使用SD WEB UI的参数配置一样。
ComfyUI工作流的G-DinoSAM语义分割功能可以自动识别上传的美女图片的发型。
最终生成的图片效果如下。
相关说明:实现了人脸一致的条件下只改变了人物的头发,最完美地实现图片的局部修改。虽然生成的头发的效果看起来稍微有些粗糙,这个和识别算法有关,可以PS稍微修复一下。但是目前来说,使用Segment Anything插件是最好的方案
好了,今天的分享就到这里了,希望今天分享的内容对大家有所帮助。
写在最后
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。