Stable Diffusion:质量高&画风清新&细节丰富的二次元大模型二次元插图

今天和大家分享一个基于Pony模型训练的二次元模型:二次元插图。关于该模型有4个不同的分支版本。

  • 1.5版本:loar模型,推荐底模型niji-动漫二次元4.5。

  • xl版本:SDXL模型版本

  • mix版本:光影减弱,减少SDXL版本色调偏暖有种过曝的感觉。

  • Pony版本:基于Pony Diffusion v6训练的版本。

在Liblib官网作者对该模型的介绍比较少,主要是相关参数推荐设置。个人体验下来,感觉出图质量非常高,画风比较清新,背景细节元素丰富逼真。

模型下载地址(文末网盘地址也可获取)

作者在官网给出了该大模型推荐参数设置。

  • 采样:DPM++ 2M Karras/Euler a

  • 采样迭代步数:30

下面我们来实际体验一下,看使用这个模型出来的图片效果如何吧。

反向提示词

score_6,score_5,score_4,(worstquality,lowquality),deformed,distorted,disfigured,doll,poorlydrawn,badanatomy,wronganatomy

公共参数设置

  • 大模型:二次元插图 Pony版

  • 采样器:Euler a

  • 采样迭代步数:30

  • CFG:7

  • 图片宽高:768*1024<

### Stable Diffusion 插图模型介绍 #### 工作原理概述 Stable Diffusion 是一种基于扩散模型(Diffusion Model)的人工智能技术,由 Stability AI 团队开发。这种模型通过逐步向随机噪声中加入结构化信息来生成图像。具体来说,在训练过程中,模型学习如何将一张图片逐渐退化成纯噪声;而在推理阶段,则反向操作&mdash;&mdash;从完全的噪声开始,逐步恢复出清晰的图像[^2]。 对于插图二次元风格的艺术创作而言,LoRA (Low-Rank Adaptation of Large Language Models) 模型提供了一种特别有效的方法。这类低秩适应方法允许只用很少量的数据就能微调大型预训练语言模型,使得即使是在特定领域内也能快速获得良好的表现效果。当应用于图像生成时,LoRA 可以帮助调整最终输出的画面特征,比如色彩、线条等细节部分,使其更贴合所需的艺术风格[^1]。 #### 应用场景举例 - **动漫角色定制**:利用 LoRA 技术可以根据个人喜好创建独一无二的角色形象; - **游戏美术资产生产**:加速游戏角色、道具的设计流程,降低制作成本; - **虚拟偶像打造**:为直播平台上的虚拟主播赋予更加生动逼真的外观; - **概念设定绘制**:辅助设计师效完成电影、电视剧的概念草图绘制工作。 除了上述提到的应用之外,还有许多其他可能性等待探索者去发掘。值得注意的是 DiscoMix 这样的混合模型也提供了丰富的创意空间给艺术家们尝试不同的组合方式创造出独特的效果[^3]。 ```python # Python代码示例展示如何加载并使用一个预先训练好的Stable Diffusion模型来进行图像生成功能。 from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = &quot;stabilityai/stable-diffusion-2-base&quot; scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder=&quot;scheduler&quot;) pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler).to(&quot;cuda&quot;) prompt = &quot;a photograph of an astronaut riding a horse on mars.&quot; image = pipe(prompt).images[0] image.save(&quot;./astronaut_rides_horse.png&quot;) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值