节点间通路。给定有向图,设计一个算法,找出两个节点之间是否存在一条路径。
示例1:
输入:n = 3, graph = [[0, 1], [0, 2], [1, 2], [1, 2]], start = 0, target = 2
输出:true
示例2:
输入:n = 5, graph = [[0, 1], [0, 2], [0, 4], [0, 4], [0, 1], [1, 3], [1, 4], [1, 3], [2, 3], [3, 4]], start = 0, target = 4
输出 true
提示:
- 节点数量n在[0, 1e5]范围内。
- 节点编号大于等于 0 小于 n。
- 图中可能存在自环和平行边
class Solution {
public boolean findWhetherExistsPath(int n, int[][] graph, int start, int target) {
// 用来标记是否已经访问过某个节点了
boolean[] visited = new boolean[n];
// 邻接表
ArrayList[] edgeList = new ArrayList[n];
// 构建邻接表
for (int i = 0; i < n; ++i){
edgeList[i] = new ArrayList<Integer>();
}
for (int[] edge : graph){
edgeList[edge[0]].add(edge[1]);
}
// 使用队列来帮助广度优先查找
Queue<Integer> queue = new ArrayDeque<>();
// 先把起始节点放进来
queue.offer(start);
visited[start] = true;
while (!queue.isEmpty()) {
// 取出来当前层遍历的元素
int node = queue.poll();
// 对它的所有邻居进行检查
for (int idx = 0; idx < edgeList[node].size(); ++idx) {
int neighbor = (int) edgeList[node].get(idx);
// 如果之前已经访问过该邻居了,那么就跳过去
if (visited[neighbor]) continue;
// 如果找到了,就直接返回 ture
if (neighbor == target) return true;
// 否则标记来过了,然后放到队列中去
visited[neighbor] = true;
queue.offer(neighbor);
}
}
return false;
}
}