最大M子段和

转载的!原文: 点击打开链接
最大M子段和
  给定n个数求这n个数划分成互不相交的m段的最大m子段和。
  经典的动态规划优化的问题。设f(i, j)表示前i个数划分成j段,且包括第i个数的最大m子段和,那么有dp方程:
    f(i, j) = max { f(i - 1, j) + v[i], max {f(k, j - 1) + v[i]}(k = j - 1 ... i - 1) }
  也就是说第i个数要么自己划到第j段,要么和前一个数一起划到第j段里面,转移是O(n)的,总复杂度O(n * n * m)。
  可以引入一个辅助数组来优化转移。设g(i, j)表示前i个数划分成j段的最大子段和(注意第i个数未必在j段里面),那么递推关系如下:
    g(i, j) = max{g(i - 1, j), f(i, j)},分是否加入第i个数来转移
  这样f的递推关系就变成:
    f(i, j) = max{f(i - 1, j), g(i - 1, j - 1)} + v[i],转移变成了O(1)
  这样最后的结果就是g[n][m],通过引入辅助数组巧妙的优化了转移。实现的时候可以用一维数组,速度很快。

附HDU 1024题目代码:
#include  < cstdio >
#include 
< algorithm >
using   namespace  std;
const   int  N  =   1000010 , INF  =   0x3fffffff ;

int  f[N], g[N], a[N];

int  max_sum( int  m,  int  n)
{
    
int  i, j, t;
    
for  (i  =   1 ; i  <=  n; i ++ )
    {
        t 
=  min(i, m);
        
for  (j  =   1 ; j  <=  t; j ++ )
        {
            f[j] 
=  max(f[j], g[j - 1 ])  +  a[i];
            g[j
- 1 >?=  f[j - 1 ];
        }
        g[j
- 1 >?=  f[j - 1 ];
    }
    
return  g[m];
}

int  main()
{
    
int  m, n;

    
while  (scanf( " %d %d " & m,  & n)  ==   2   &&  m  &&  n)
    {
        
for  ( int  i  =   1 ; i  <=  n; i ++ )
        {
            f[i] 
=  g[i]  =   - INF;
            scanf(
" %d " & a[i]);
        }
        printf(
" %d\n " , max_sum(m, n));
    }

    
return   0 ;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值