联赛联考2

策略总结
这场联考发挥的很糟糕。该拿的分总因为一些失误流失严重。比如说爆类型损失了164分,粗心没看清输出格式少了100分。这些分如果没丢是可以排很前的。
总的来说这次模拟题目整体不难。
Day1
T1怎么看都是水题,一直怀疑有坑,但其实没有。几乎全场都过了。
T2很快想到了可持久化线段树,写完了后对拍,没拍出错,极限数据也很靠谱。
T3时间有点不足,随手写了个spfa转移的dp水个20分。
期望220分。结局100+20+20=140
T2过对拍都错了?!
靠,暴力程序和正解都爆类型了。
现在才知道多项式每一项都要转个类型,以前以为一个转了整条式子会同步转。
好心塞,两个字母带走了80分
Day2
T1题面没说模数是质数,直接放弃,写个15分暴力。
T2题面很高端,似懂非懂,但直觉告诉我找一个环输出可能能水很多分。
T3觉得是规律题,有循环节。先写了个暴力发现了的确有规律,然后按规律写了正解,对拍,拍出错了,发现 m<log2K 是不符合规律,但仍有循环节,由于m很小,循环节也很小,就机智的写了个hash判循环节。对拍也过了。大数据也貌似没爆。

期望150左右(T2情况不明)
结局15+0+46=61
T2居然正解就是找一个环输出,很多人不明不白的过了。而我由于仓促之中输出了答案序列忘记输出答案序列长度,白白少了100
T3调了半天才发现,又爆类型了,这次是另外一种爆类型 1<< p 即使你的p是 longlong ,也会爆,要把1也转类型才没问题。

连续两天爆类型,心好累。

D2T1由于出题人疏忽忘记说了p是质数,但p是合数也可以做。

题面 :
Ans=Σni=mikmodP

P,n,m<=1012,k<=2000

差分表是多项式求和利器
对于多项式 f(n)=Σki=0cini
可以在 O(k2)ΣNi=0f(i)

首先求出差分表第0条对角线 d0,d1,d2,...dk
f(n)=Σkp=0(np)dp
Σnk=0(kp)=(n+1p+1)
ΣNi=0f(i)=ΣNi=0Σkp=0(ip)dp=ΣNi=0(ip)Σkp=0dp=Σkp=0dpΣNi=0(ip)=Σkp=0dpΣNi=0(ip)=Σkp=0dp(N+1p+1)

由于P较大,会爆longlong,有必要使用Head算法。

对于组合数的计算,当然不能用逆元。
由于 (nm)(nm+1)=m+1nm,(n0)=1
用数组fac[m]记录组合数的因子,一开始fac[m]=n-m , 扫一边fac,用m+1约去fac的公约数。 Πfacm=(nm)

D1T3

Pool
从前有两个青蛙王国,两个王国商业都非常繁荣。但是一块池塘阻碍了两国的商业往来。一次,两只青蛙在池塘的两岸,他们都希望到对岸去。我们可以将池塘看做一个n×m的矩形,在每个格子里,可能会有荷叶。青蛙必须踩在荷叶上,不能跳进水里。如图青蛙可以向他前方的5个有荷叶的地方跳去。
这里写图片描述

由于有的地方荷叶比较小,当一个青蛙从该荷叶上跳走之后,荷叶会沉入水底,两个青蛙也不能同时跳上这种荷叶。两个青蛙想知道有多少种方式使他们都到达对岸。第一个青蛙可以从第一行任何一个有荷叶的格子出发。第二个青蛙可以从最后一行任何一个有荷叶的格子出发。当第一个青蛙到达最后一行任何一个有荷叶的格子时,他就算到达了对岸。当第二个青蛙到达第一行任何一个有荷叶的格子时,他也算到达了对岸。请你帮助青蛙们计算有多少种方案可以让他们都到达对岸。
注:第一个青蛙只能向下跳,第二个青蛙只能向上跳。青蛙并不能跳出矩形区域。

Input

输入的第一行包含两个整数n,m。
第2至n+1行包含m个整数。若该数为0,表示该格子上没有荷叶,青蛙不能通过。若该数为1,表示该格子上的荷叶只允许一个青蛙通过。若该数为2,表示该格子上的荷叶可以允许两个青蛙都通过。

Output

输出的第一行包含一个整数,表示两个青蛙都到达对岸的方案数。由于结果可能非常大,输出答案模1000000007的结果。

这题状态显然:f[x1][y1][x2][y2]
判一下状态合不合法,直接转移。
值得注意的是要然x小的青蛙先走。枚举时|x1-x2|<=3

#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std ;

#define N 52
#define mo 1000000007 

int i , j , k , m , n , g[N][N] , v[N][N][N][N] , d[5][2] = { 1 , 2 , 1 , -2 , 2 , 1 , 2 , -1 , 3 , 0 } ;


typedef long long ll ;

ll  f[N][N][N][N] , dlt[N][N][N][N] ;


int l , r  ;


int main() {

    scanf("%d%d",&n,&m ) ;
    for( i=1 ; i<=n ; i++ ) 
        for( j=1 ; j<=m ; j++ ) 
            scanf("%d",&g[i][j] ) ;
    for( i=1 ; i<=m ; i++ ) if( g[1][i]!=0 ) 
        for( j=1 ; j<=m ; j++ ) if( ( i==j ) && ( g[1][i]==2 ) || ( i!=j )  &&  ( g[1][j]>=1 && g[1][i]>=1 ) ) {
            f[1][i][1][j] = 1 ;
        }
    for( int x = 1 ; x<=n ; x++ ) {
        for( int y = 1 ; y<=m ; y++ ) {
            if( g[x][y]==0 )  continue ;
            for( int a = max( 0 , x-3 ) ; a<=x+3 ; a++ ) {
                if( a > n ) break ;
                for(  int b = 1 ; b<=m ; b++ ) {
                    if( g[a][b]==0 ) continue ;
                    if( a==x && b==y && g[a][b]==1 ) continue ;
                    if( f[x][y][a][b]==0 ) continue ;
                    for( k=0 ; k<5 ; k++ ) {
                        int nx , ny ;
                        if( x<a ) {
                            nx = x + d[k][0] , ny = y + d[k][1] ;
                            if( nx < 1 ||  ny < 1 || nx > n || ny > m ) continue ;
                            if( g[nx][ny]==0 ) continue ;
                            if( nx== a && ny== b && g[nx][ny]==1 ) continue ;
                            if( nx-3>a || nx+3<a ) continue ;
                            ll *C = &f[nx][ny][ a ][ b ] , *B = &f[x][y][a][b] ; 
                            *C += *B  ;
                            *C %= mo ;
                        } else {
                            nx = a + d[k][0] , ny = b + d[k][1] ;
                            if( nx>n || ny<1 || nx < 1 || ny > m  ) continue ;
                            if( g[nx][ny]==0 ) continue ;
                            if( nx==x && ny==y && g[nx][ny]==1 ) continue ;
                            if( nx-3>x || nx+3<x ) continue ;
                            f[ x ][ y][nx][ny] += f[ x ][ y ][ a ][ b ] ;
                            f[ x ][y][nx][ny] %= mo ;
                        }
                    }
                }
            }
        }
    }
    ll ans = 0 ;
    for( i=1 ; i<=m ; i++ ) 
        for( j=1 ; j<=m ; j++ ) ans = ( ans + f[n][i][n][j] ) % mo ;
    printf("%lld",ans ) ;
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值