最近好久没有写博客了╮(╯_╰)╭,堆积了一堆题,打cf之前没事做就写一下博客\(≧▽≦)/(主要是因为懒癌晚期( ̄△ ̄;))
题目:
勾股定理是我们中华名族的骄傲,可惜在很多书上都不是这样命名的。今天我们来算算勾股数,也就是说给定一个正整数N,找出所有小于N的三个正整数a,b,c,满足:a*a+b*b=c*c,且a<=b< c以及a,b,c三者的最大公约数为1。
Input
本问题有多组测试数据,每一组就一行,包含三个正整数N,L,R (1<=N,L,R<=1000000,L<=R, R – L <=100)。Output
输出对所有满足题目要求勾股数,依次按a,b,c排序后的结果编号在[L,R]区间内的所有勾股数。
输出有两部分,第一部分是满足条件的解的组数M;第二部分是M行的解,解的输出格式请参见Sample Output的格式。
注意输出时有输出格式问题的,即Case:后面有一个空格,case数后面也有一个空格。输出排序请参见Sample Output的排序。Sample Input
20 1 4
20 2 3Sample Output
3
Case: 1 a=3,b=4,c=5
Case: 2 a=5,b=12,c=13
Case: 3 a=8,b=15,c=17
2
Case: 1 a=5,b=12,c=13
Case: 2 a=8,b=15,c=17
思路:a*a+b*b=c*c,(x+y)^2=(x-y)^2+4*x*y是不是和这个式子很像,a=x-y,b=sqrt(4*x*y),c=x+y,为了凑成整数,可以变式为a=x^2-y^2,b=2*x*y,c=x^2+y^2,这样子遍历一下x和y就可以找出勾股数了,然后按照题目要求筛选一下。
下面是代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<queue>
#include<cmath>
#include<algorithm>
#define N 1000000
#define LL long long
using namespace std;
struct point{
LL x,y,z;
}gg[N];
int n,l,r;
int len;
queue<point> q;
int cmp(point a,point b)
{
if(a.x!=b.x) return a.x<b.x;
else if(a.y!=b.y) return a.y<b.y;
else return a.z<b.z;
}
LL gcd(LL a,LL b)
{
if(b!=0) return gcd(b,a%b);
else return a;
}
void init()
{
len=0;
for(LL i=2;i*i<=N;i++)
{
for(LL j=1;j<i;j++)
{
if(i*i+j*j>N) continue;
gg[len].x=i*i-j*j;
gg[len].y=2*i*j;
if(gg[len].x>gg[len].y) swap(gg[len].x,gg[len].y);
gg[len].z=i*i+j*j;
if(gcd(gg[len].x,gcd(gg[len].y,gg[len].z))==1) len++;
}
}
sort(gg,gg+len,cmp);
//printf("%d\n",len);
}
int main()
{
init();
while(~scanf("%d%d%d",&n,&l,&r))
{
int tmp=0,k=1;
for(int i=0;i<len;i++)
{
if(gg[i].z<=n)
{
q.push(gg[i]);
}
}
printf("%d\n",max(min(r,(int)q.size())-l+1,0));
while(!q.empty())
{
point t=q.front();
tmp++;
if(tmp>=l&&tmp<=r)
{
printf("Case: %d a=%lld,b=%lld,c=%lld\n",k++,t.x,t.y,t.z);
}
q.pop();
}
}
}