前言:
在学堆排序的时候,第一份资料看的是算法导论,嚼着好晦涩,昏昏欲睡,不直观不好理解。于是又查阅了其他资料,果然网上各种总结更给力啊。
我根据自己的情况,把堆排序学习分成3部分:快速理解、深入理解原理和C++实现。自我感觉,这种安排对快速理解堆排序还是很有帮助的。
所谓“原创”,是在整理网友资料基础上,加上了一些自己的理解和感悟。
堆的定义:
堆(heap)是一种数据结构。定义:
n个元素的序列{k1,k2,…, kn}当且仅当满足下列关系之一时,称之为堆。
情形1:ki <= k2i 且ki <= k2i+1
情形2:ki >= k2i 且ki >= k2i+1
其中i=1,2,…,n/2向下取整.
二叉堆的定义:
二叉堆是一种特殊的堆,它是完全二叉树或者是近似完全二叉树。
二叉堆满足二个特性:
1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。
2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。
当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆(大根堆)。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆(小根堆)。
二叉堆的存储
二叉堆一般用数组表示。
(1) 若根结点存在序号0处, i 结点的父结点下标就为(i-1)/2。i结点的左右子结点下标分别为2i+1和2i+2。
(2) 如果根结点是从1开始,i 结点的父节点下标为 i/2,左右孩子结点分别是2i和2i+1。
堆排序:
对于堆排序,最重要的两个操作:
(1)构造初始堆;
(2)调整堆。
操作过程如下:
1)初始化堆:将R[1..n]构造为堆;
2)将当前无序区的堆顶元素R[1]同该区间的最后一个记录交换,然后将新的无序区调整为新的堆。
实例如下:
给定一个整形数组a[]={16,7,3,20,17,8},对其进行堆排序。
首先根据该数组元素构建一个完全二叉树,得到
然后需要构造初始堆,则从最后一个非叶节点开始调整,调整过程如下:
20和16交换后不满足堆的性质,因此需重新调整
这样就得到了初始堆。
每次调整都是从父节点、左孩子节点、右孩子节点三者中选择最大者跟父节点进行交换(交换之后可能造成被交换的孩子节点不满足堆的性质,因此每次交换之后要重新对被交换的孩子节点进行调整)。
有了初始堆之后就可以进行排序了。
交换3和20,得到
此时3位于堆顶不满堆的性质,则需继续调整
这样堆排序就完成了。
到这里,差不多应该理解堆排序的操作了,下面总结下堆排序的基本思想:
1)将初始待排序关键字序列(R1,R2....Rn)构建成大顶堆,此堆为初始的无序区;
2)将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,......Rn-1)和新的有序区(Rn),且满足R[1,2...n-1]<=R[n];
3)由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,......Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2....Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
下一篇:[堆排序之二]深入理解原理
参考资料:
[1] 维基百科:堆、二叉堆
[2] http://www.cnblogs.com/mengdd/archive/2012/11/30/2796845.html
[3] http://www.cnblogs.com/dolphin0520/archive/2011/10/06/2199741.html