能量项链——典型的区间dp问题,值得一看

[NOIP2006 提高组] 能量项链

题目描述

在 Mars 星球上,每个 Mars 人都随身佩带着一串能量项链。在项链上有 N N N 颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是 Mars 人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为 m m m,尾标记为 r r r,后一颗能量珠的头标记为 r r r,尾标记为 n n n,则聚合后释放的能量为 m × r × n m \times r \times n m×r×n(Mars 单位),新产生的珠子的头标记为 m m m,尾标记为 n n n

需要时,Mars 人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。

例如:设 N = 4 N=4 N=4 4 4 4 颗珠子的头标记与尾标记依次为 ( 2 , 3 ) ( 3 , 5 ) ( 5 , 10 ) ( 10 , 2 ) (2,3)(3,5)(5,10)(10,2) (2,3)(3,5)(5,10)(10,2)。我们用记号 ⊕ \oplus 表示两颗珠子的聚合操作, ( j ⊕ k ) (j \oplus k) (jk) 表示第 j , k j,k j,k 两颗珠子聚合后所释放的能量。则第 4 4 4 1 1 1 两颗珠子聚合后释放的能量为:

( 4 ⊕ 1 ) = 10 × 2 × 3 = 60 (4 \oplus 1)=10 \times 2 \times 3=60 (41)=10×2×3=60

这一串项链可以得到最优值的一个聚合顺序所释放的总能量为:

( ( ( 4 ⊕ 1 ) ⊕ 2 ) ⊕ 3 ) = 10 × 2 × 3 + 10 × 3 × 5 + 10 × 5 × 10 = 710 (((4 \oplus 1) \oplus 2) \oplus 3)=10 \times 2 \times 3+10 \times 3 \times 5+10 \times 5 \times 10=710 (((41)2)3)=10×2×3+10×3×5+10×5×10=710

输入格式

第一行是一个正整数 N N N 4 ≤ N ≤ 100 4 \le N \le 100 4N100),表示项链上珠子的个数。第二行是 N N N 个用空格隔开的正整数,所有的数均不超过 1000 1000 1000。第 i i i 个数为第 i i i 颗珠子的头标记( 1 ≤ i ≤ N 1 \le i \le N 1iN),当 i < N i<N i<N 时,第 i i i 颗珠子的尾标记应该等于第 i + 1 i+1 i+1 颗珠子的头标记。第 N N N 颗珠子的尾标记应该等于第 1 1 1 颗珠子的头标记。

至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

输出格式

一个正整数 E E E E ≤ 2.1 × 1 0 9 E\le 2.1 \times 10^9 E2.1×109),为一个最优聚合顺序所释放的总能量。

样例 #1

样例输入 #1

4
2 3 5 10

样例输出 #1

710

提示

NOIP 2006 提高组 第一题

思路

该题和合并石子(环)在处理方式上一样,都是通过把小区间合并成大区间,枚举合并两个区间的中间节点,计算出整个区间合并的最大能量因为也是一个环,所以我们还是先把环拆链,长度加倍,注意枚举顺序,因为是把小区间合并成大区间,所以先枚举区间长度,再枚举区间左端点,计算出区间右端点,最后再枚举最后一次合并的点,也就是断点,再计算答案。还是和前面一样,注意边界问题,区间长度不能大于n,也不能小于1.左右端点的范围不能小于或者大于真实情况。

#include <bits/stdc++.h>
using namespace std;

const int MAX_N = 301;

int dp[MAX_N][MAX_N];
int a[MAX_N];
int maxn=INT_MIN;

int main() {
    int n;
    cin >> n;
    for (int i = 1; i <= n; ++i) {
        cin >> a[i];
        a[n+i]=a[i];
    }
    for (int len = 1; len <= 2*n; ++len) {
        for (int i = 1; i + len - 1 <= 2*n; ++i) {
            int j = i + len - 1;
            for (int k = i+1; k < j; ++k) {
                dp[i][j] = max(dp[i][j], dp[i][k] + dp[k][j] + a[i]*a[k]*a[j]);
            }
        }
    }
	for (int i=1;i<=n;i++){
		maxn=max(dp[i][i+n],maxn);
	}
    cout << maxn ;

    return 0;
}

在这里插入图片描述

  • 9
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是一篇关于区间DP的学习笔记,希望对你有所帮助。 ### 什么是区间DP 区间 DP 是一种动态规划算法,用于解决一些区间上的问题。具体来说,区间 DP 通常用于解决如下问题: - 最长公共子序列(LCS) - 最长递增子序列(LIS) - 最大子段和 - 区间选数问题 区间 DP 通常采用分治或递推的方式进行求解,具体方法取决于问题的性质。 ### 区间 DP 的递推方法 区间 DP 的递推方法通常有两种,一种是自底向上的递推方法,一种是自顶向下的记忆化搜索方法。 自底向上的递推方法通常采用二维数组或三维数组来记录状态转移方程,具体的递推方式如下: ```cpp for (int len = 2; len <= n; len++) { for (int i = 1; i <= n - len + 1; i++) { int j = i + len - 1; for (int k = i; k < j; k++) { // 状态转移方程 } } } ``` 其中,len 表示区间长度,i 和 j 分别表示区间的左右端点,k 表示区间的划分点。 自顶向下的记忆化搜索方法通常采用记忆化数组来记录状态转移方程,具体的递推方式如下: ```cpp int dp(int i, int j) { if (i == j) return 0; if (memo[i][j] != -1) return memo[i][j]; memo[i][j] = INF; for (int k = i; k < j; k++) { memo[i][j] = min(memo[i][j], dp(i, k) + dp(k + 1, j) + ...); } return memo[i][j]; } ``` 其中,i 和 j 分别表示区间的左右端点,k 表示区间的划分点,memo 数组用于记忆化状态转移方程。 ### 区间 DP 的优化 对于一些区间 DP 问题,我们可以通过一些技巧和优化来减少时间和空间的消耗。 一种常见的优化方式是状态压缩,将二维或三维数组压缩成一维数组,从而减少空间的消耗。 另一种常见的优化方式是使用滚动数组,将数组的维度从二维或三维减少到一维,从而减少时间和空间的消耗。 此外,对于一些具有特殊性质的区间 DP 问题,我们还可以使用单调队列或单调栈等数据结构来进行优化,从而减少时间和空间的消耗。 ### 总结 区间 DP 是一种常用的动态规划算法,用于解决一些区间上的问题区间 DP 通常采用分治或递推的方式进行求解,具体方法取决于问题的性质。对于一些区间 DP 问题,我们可以通过一些技巧和优化来减少时间和空间的消耗。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值