图论算法合集

图论算法合集

Floyd-Warshall 算法

介绍

Floyd-Warshall算法是一种用于计算加权图中所有节点对之间最短路径的算法。该算法以动态规划为基础,通过逐步更新最短路径的估计值来找到最终的最短路径。它特别适用于稠密图,即边数接近于节点数平方的图。

步骤详解
  1. 初始化距离矩阵

    • 创建一个二维数组d,其中d[i][j]表示从节点i到节点j的距离。如果i和j之间有直接边,则d[i][j]是该边的权重,否则d[i][j]设为无穷大。
    • 对于所有i,d[i][i]设为0,因为任何节点到其自身的距离都是0。
  2. 动态规划更新

    • 对于每一个节点k,更新其他所有节点对(i, j)的最短距离。
    • 更新规则为:如果从i到j经过k的路径比直接从i到j的路径更短,则更新d[i][j] = d[i][k] + d[k][j]。
  3. 输出结果

    • 经过更新后,d[i][j]将包含从节点i到节点j的最短路径的距离。
代码实现
#include <bits/stdc++.h>
using namespace std;

const int N = 210, INF = 0x3f3f3f3f; // 定义最大节点数和无穷大
int n, m; // 节点数和边数
int d[N][N]; // 距离矩阵

int main() {
    cin >> n >> m;

    // 初始化距离矩阵,所有距离设为无穷大
    memset(d, 0x3f, sizeof d);
    for (int i = 1; i <= n; i++) d[i][i] = 0; // 自己到自己的距离为0

    // 读入边
    while (m--) {
        int a, b, c;
        cin >> a >> b >> c;
        d[a][b] = min(d[a][b], c); // 取最小的边权重
    }

    // Floyd-Warshall算法
    for (int k = 1; k <= n; k++) // 枚举中间节点
        for (int i = 1; i <= n; i++) // 枚举起点
            for (int j = 1; j <= n; j++) // 枚举终点
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]); // 更新最短距离

    // 输出任意两点间的最短距离
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++)
            if (d[i][j] > INF / 2) cout << "INF "; // 超过无穷大的一半表示无路径
            else cout << d[i][j] << ' ';
        cout << endl;
    }

    return 0;
}

示例

假设有一个图有4个节点和6条边:

  • 边1: (1, 2, 2)
  • 边2: (1, 3, 6)
  • 边3: (2, 3, 3)
  • 边4: (2, 4, 1)
  • 边5: (3, 4, 1)
  • 边6: (4, 1, 5)
初始化距离矩阵
   1    2    3    4
1  0    2    6    ∞
2  ∞    0    3    1
3  ∞    ∞    0    1
4  5    ∞    ∞    0
经过第一轮k=1的更新
   1    2    3    4
1  0    2    6    ∞
2  ∞    0    3    1
3  ∞    ∞    0    1
4  5    7    11   0
经过第二轮k=2的更新
   1    2    3    4
1  0    2    5    3
2  ∞    0    3    1
3  ∞    ∞    0    1
4  5    7    10   0
经过第三轮k=3的更新
   1    2    3    4
1  0    2    5    3
2  ∞    0    3    1
3  6    8    0    1
4  5    7    10   0
经过第四轮k=4的更新
   1    2    3    4
1  0    2    5    3
2  6    0    3    1
3  6    8    0    1
4  5    7    10   0

最终结果表示了所有节点对之间的最短路径长度。

Dijkstra算法

介绍

Dijkstra算法是一种用于计算单源最短路径的算法,即从一个指定的起始节点到图中所有其他节点的最短路径。该算法适用于有向图和无向图,但要求边的权重为非负数。Dijkstra算法利用贪心策略,逐步扩展最短路径树。

步骤详解
  1. 初始化

    • 设定起点s,初始化距离数组dis,其中dis[s] = 0,其他所有节点的距离初始化为无穷大。
    • 使用优先队列(最小堆)来存储和选择当前最近的节点。
  2. 主循环

    • 每次从优先队列中取出距离最小的节点u,标记为已访问。
    • 更新u的所有邻接节点v的距离,如果通过u到v的距离小于当前记录的距离,则更新dis[v]并将v加入优先队列。
  3. 终止

    • 当所有节点都被访问或优先队列为空时,算法结束。
代码实现
#include <bits/stdc++.h>
using namespace std;
#define INF 1e9 // 定义无穷大

int a[105][3], n, m, x, y, s, t;
double mapp[105][105]; // 邻接矩阵表示图
double dis[105]; // 距离数组
bool vis[105]; // 访问标记数组

// 计算两点之间的距离
double f(int x1, int y1, int x2, int y2) {
    return sqrt(double((y2 - y1) * (y2 - y1)) + double((x2 - x1) * (x2 - x1)));
}

void Dijkstra() {
    priority_queue<pair<double, int>, vector<pair<double, int>>, greater<pair<double, int>>> pq;
    fill(dis, dis + n + 1, INF); // 初始化距离数组为无穷大
    
    pq.push({0, s}); // 起点入队,距离为0
    dis[s] = 0;
    
    while (!pq.empty()) {
        int u = pq.top().second; // 取出当前距离最小的节点
        pq.pop();
        
        if (vis[u]) continue; // 如果已访问,跳过
        vis[u] = true; // 标记为已访问

        for (int j = 1; j <= n; j++) {
            if (!vis[j] && dis[u] + mapp[u][j] < dis[j]) { // 如果j未访问且通过u到j的距离更短
                dis[j] = dis[u] + mapp[u][j]; // 更新距离
                pq.push({dis[j], j}); // 将j入队
            }
        }
    }
}

int main() {
    memset(mapp, 0x7f, sizeof(mapp)); // 初始化图的邻接矩阵为无穷大
    scanf("%d", &n); // 输入节点数
    for (int i = 1; i <= n; i++) {
        scanf("%d %d", &a[i][0], &a[i][1]); // 输入节点的坐标
    }
    scanf("%d", &m); // 输入边数
    for (int i = 0; i < m; i++) {
        scanf("%d%d", &x, &y);
        mapp[x][y] = mapp[y][x] = f(a[x][0], a[x][1], a[y][0], a[y][1]); // 计算边

的权重
    }
    scanf("%d%d", &s, &t); // 输入起点和终点
    Dijkstra();
    printf("%.2lf", dis[t]); // 输出从起点到终点的最短距离
    return 0;
}

示例

假设有一个图有4个节点和4条边:

  • 节点1坐标:(0, 0)

  • 节点2坐标:(2, 2)

  • 节点3坐标:(5, 5)

  • 节点4坐标:(7, 8)

  • 边1: (1, 2)

  • 边2: (2, 3)

  • 边3: (3, 4)

  • 边4: (4, 1)

每条边的权重由节点间的欧几里得距离计算得出。

初始化邻接矩阵
   1    2    3    4
1  0    2.83 ∞   ∞
2  2.83 0   4.24 ∞
3  ∞   4.24 0   3.61
4  ∞   ∞   3.61 0
Dijkstra算法过程
  1. 起点为1,距离初始化为:dis = [0, 2.83, ∞, ∞],节点1入队。
  2. 节点1出队,标记为已访问。更新节点2的距离。
  3. 节点2出队,标记为已访问。更新节点3的距离。
  4. 节点3出队,标记为已访问。更新节点4的距离。
  5. 最终,dis = [0, 2.83, 7.07, 10.68],节点4的最短距离为10.68。

总结

Floyd-Warshall算法适用于计算所有节点对之间的最短路径,时间复杂度为O(n^3),适用于稠密图。Dijkstra算法用于计算单源最短路径,时间复杂度为O((V+E) log V),适用于边权非负的稀疏图。

通过实际代码示例和详尽的注释,我们理解了两种算法的核心思想和实现细节。在实际应用中,根据问题的性质选择合适的算法可以提高效率和准确性。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值