【算法导论】用动态规划解活动选择问题

本文介绍了如何使用动态规划解决活动选择问题,对比了与贪心算法的不同,并提供了详细的代码注解,通过二维数据记录最大兼容集合个数及最优分割点,通过递归求解动态规划的最优解。
摘要由CSDN通过智能技术生成

        上一篇讲了贪心算法来解活动选择问题(【算法导论】贪心算法之活动选择问题),发现后面有一道练习16.1-1是要用动态规划来解活动选择问题。其实跟之前的矩阵链乘法有些相似,也是考虑分割的活动是哪一个,并用二维数据来记录Sij---最大兼容集合个数,和用另一个二维数据来记录Sij取得最大时的活动分割点k。然后就是考虑边界问题,和使用递归来求动态规划的最优解。


代码注解比较详尽:


#include <iostream>
#include <algorithm>

using namespace std;

#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值