三角形数塔(Java)

设有一个三角形的数塔,顶点结点称为根结点,每个结点有一个整数数值。从顶点出发,可以向左走,也可以向右走。如图所示。问题:当三角形数塔给出之后,找出一条从第一层到达底层的路径,使路径的值最大。若这样的路径存在多条,任意给出一条即可。

我们从下往上开始选取,每次选取第i个都是下面一行的第i个或第i+1个,为了避免超出数组,我们把数组开大两个,使它的左右都为0,其实也选取不到它,因为这树上的数一定比0大,另外我们创建一个path数组来记录选中的值,以下是代码

import java.util.Scanner;
public class Main {
    public static void main(String args[]) {
        Scanner scanner = new Scanner(System.in);
        int arr[][] = new int[6][6];
        int dp[][] = new int[6][6];
        int path[][] = new int[6][6];
        arr[1][1] = 13;
        arr[2][1] = 11;arr[2][2] = 8;
        arr[3][1] = 12; arr[3][2] = 7;arr[3][3] = 26;
        arr[4][1] = 6;arr[4][2] = 14;arr[4][3] = 15;arr[4][4] = 8;
        arr[5][1] = 12;arr[5][2] = 7;arr[5][3] = 13;arr[5][4] = 24; arr[5][5] = 11;
        for (int j = 1; j <= 5; j++) {  
            dp[5][j] = arr[5][j];  
        }  
        for (int i = 4; i >= 1; i--) {
            for (int j = 1; j <= i; j++) {
                if (dp[i + 1][j] > dp[i + 1][j + 1]) {
                    dp[i][j] = arr[i][j] + dp[i + 1][j];
                    path[i][j] = j; 
                } else {
                    dp[i][j] = arr[i][j] + dp[i + 1][j + 1];
                    path[i][j] = j + 1; 
                }
            }
        }
        int maxPath = dp[1][1];
        System.out.println(maxPath);
        int col = 1; 
        for (int row = 1; row <= 5; row++) {
            System.out.print(arr[row][col] + " ");
            col = path[row][col];
        }
    }
}

输出后为

86
13 8 26 15 24

<think>好的,用户想找数塔问题的Java实现或解决方法。首先我需要回顾数塔问题的基本概念。数塔问题通常是指从一个三角形顶端到底部,选择一条路径使得路径上的字之和最大。每一步可以向下或向右下方走。这应该是一个动态规划的经典问题。 用户提到的参考引用中有两篇提到了数塔问题,引用[2]和引用[1]。引用[2]中虽然代码看起来是C++的,但思路应该可以借鉴。引用[1]是关于字金字的构建,可能涉及结构生成而非动态规划解法,但需要确认。 接下来需要确定动态规划的状态转移方程。数塔的每一层每个位置的最大和,应该由下一层相邻的两个位置中的较大值加上当前值得到。比如,dp[i][j] = max(dp[i+1][j], dp[i+1][j+1]) + num[i][j]。 然后考虑如何用Java实现。需要先读取数塔据,通常可以用二维组存储。然后从底层向上逐层计算。最后顶部的值就是最大路径和。如果要输出路径的话,可能需要反向追踪。 还要注意边界条件,比如数塔的最底层,dp值就是它们本身。另外,空间优化方面,可以使用滚动组减少空间复杂度,但可能牺牲路径追踪的能力。 用户提供的引用[2]中的C++代码使用了类似的方法,函myMax比较两个,然后循环处理每一层。Java的实现应该结构相似,但语法不同。比如,使用嵌套循环,外层从倒第二层开始向上遍历,内层处理每层的每个元素。 另外,引用[1]中的字金字构建可能指的是如何生成数塔结构,而不是解决最大路径问题。但用户的问题明确是关于数塔问题的解决,所以应该以动态规划方法为主。 需要注意代码的可读性,比如变量命名、注释等,方便用户理解。例如,使用dp组存储中间结果,清晰的循环结构。 最后,生成相关问题时要围绕数塔问题的扩展,比如空间优化、路径记录、不同解法比较等。这有助于用户深入理解。</think>### 数塔问题的Java实现解决方案 #### 问题描述 数塔问题要求从字金字的顶部出发,每一步只能移动到下一行相邻的字(向下或向右下),找到一条路径使得路径上字之和最大。例如: ``` 5 3 8 8 1 0 2 7 4 4 ``` #### 动态规划解法 1. **状态定义** 使用二维组$dp[i][j]$表示从第$i$行第$j$列出发到底层的最大路径和 2. **递推公式** $$dp[i][j] = \max(dp[i+1][j], dp[i+1][j+1]) + num[i][j]$$ 3. **边界条件** 最底层$dp[n-1][j] = num[n-1][j]$(Java组下标从0开始) #### Java代码实现 ```java public class NumberTower { public static int maxPathSum(int[][] tower) { int n = tower.length; int[][] dp = new int[n][n]; // 初始化底层 for (int j = 0; j < n; j++) { dp[n-1][j] = tower[n-1][j]; } // 自底向上递推 for (int i = n-2; i >= 0; i--) { for (int j = 0; j <= i; j++) { dp[i][j] = Math.max(dp[i+1][j], dp[i+1][j+1]) + tower[i][j]; } } return dp[0][0]; } public static void main(String[] args) { int[][] tower = { {5}, {3, 8}, {8, 1, 0}, {2, 7, 4, 4} }; System.out.println("最大路径和为:" + maxPathSum(tower)); // 输出24 } } ``` #### 空间优化 可使用滚动组将空间复杂度优化为$O(n)$: ```java int[] dp = new int[n]; // 初始化底层 for (int j = 0; j < n; j++) { dp[j] = tower[n-1][j]; } for (int i = n-2; i >= 0; i--) { for (int j = 0; j <= i; j++) { dp[j] = Math.max(dp[j], dp[j+1]) + tower[i][j]; } } ``` #### 路径记录方法 增加路径追踪组: ```java int[][] path = new int[n][n]; // 在计算dp时记录路径选择 if (dp[i+1][j] > dp[i+1][j+1]) { path[i][j] = j; // 向下 } else { path[i][j] = j+1; // 向右下 } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值