leetcode 5. 最长回文子串

@(labuladong的算法小抄)[dp, 双指针]

leetcode 5. 最长回文子串

题目描述

在这里插入图片描述

解题思路

参考:labuladong的算法小抄P373

dp

时间o(n²),空间o(n²)

注意与最长回文子序列解法的区别。子串必须要求是连续的,因此,如果定义dp[i][j]表示s[i...j]最长回文子串的长度,则由dp[i+1][j-1]无法推出dp[i][j]

class Solution {
    public String longestPalindrome(String s) {
        int n = s.length();
        if (n == 0 || n == 1) return s;
        if (n == 2) return (s.charAt(0) == s.charAt(1)) ? s : s.substring(0, 1);

        /* 记录最长回文串的长度,起始下标 */
        int maxLen = 1, maxBegin = 0;

        /* dp[i][j]表示s[i...j]是否是回文串 */
        boolean[][] dp = new boolean[n][n];
        for (int i = 0; i < n; i++) Arrays.fill(dp[i], true);

        /* i从下往上,j从左往右遍历 */
        for (int i = n - 2; i >= 0; i--) {
            for (int j = i + 1; j < n; j++) {
                /* dp[i][j] = (dp[i + 1][j - 1] && (s[i] == s[j])) */
                dp[i][j] = (dp[i + 1][j - 1] && (s.charAt(i) == s.charAt(j)));
                /* 如果当前子串是回文串,且长度大于maxLen,则更新最长回文串 */
                if (dp[i][j] && (j - i + 1 > maxLen)) {
                    maxLen = j - i + 1;
                    maxBegin = i;
                }
            }
        }
        return s.substring(maxBegin, maxBegin + maxLen);
    }
}

双指针

时间o(n²),空间o(1)

class Solution {
    /* 记录最长回文串的长度,起始下标 */
    int maxLen = 1, maxBegin = 0;
    public String longestPalindrome(String s) {
        int n = s.length();
        if (n == 0 || n == 1) return s;
        if (n == 2) return (s.charAt(0) == s.charAt(1)) ? s : s.substring(0, 1);



        for (int i = 0; i < n; i++) {
            /* 寻找长度为奇数的回文子串 */
            palindrome(s, i, i);
            /* 寻找长度为偶数的回文子串 */
            palindrome(s, i, i + 1);
        }

        return s.substring(maxBegin, maxBegin + maxLen);
    }
    /* 从s[left]和s[right]开始向两边扩散,扩散的同时并更新最长回文串 */
    private void palindrome(String s, int left, int right) {
        /* 防止索引越界 */
        while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
            left--;
            right++;
        }
        /* 更新最长回文串。注意:扩散完之后,最长回文串为s[left-1...right+1] */
        if (right - left - 1 > maxLen) {
            maxLen = right - left - 1;
            maxBegin = left + 1;
        }
    }
}
### LeetCode5 题 '最长回文子串' 的 Python 解法 对于给定字符串 `s`,返其中的最长回文子串是一个经典算法问题。一种高效的解决方案是利用中心扩展方法来寻找可能的最大长度文。 #### 中心扩展法解析 该方法基于观察到的一个事实:一个文串可以由中间向两端不断扩散而得。因此可以从每一个字符位置出发尝试构建尽可能大的文序列[^1]。 具体来说: - 对于每个字符作为单个字符的中心点; - 或者两个相同相邻字符作为一个整体中心点; - 向两侧延伸直到遇到不匹配的情况为止; 记录下每次找到的有效文串及其起始索引和结束索引,并更新全局最优解。 下面是具体的 Python 实现代码: ```python def longest_palindrome(s: str) -> str: if not s or len(s) == 0: return "" start, end = 0, 0 for i in range(len(s)): len1 = expand_around_center(s, i, i) len2 = expand_around_center(s, i, i + 1) max_len = max(len1, len2) if max_len > end - start: start = i - (max_len - 1) // 2 end = i + max_len // 2 return s[start:end + 1] def expand_around_center(s: str, left: int, right: int) -> int: L, R = left, right while L >= 0 and R < len(s) and s[L] == s[R]: L -= 1 R += 1 return R - L - 1 ``` 此函数通过遍历整个输入字符串并调用辅助函数 `expand_around_center()` 来计算以当前位置为中心能够形成的最长文串长度。最终得到的结果即为所求的最大回文子串
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值