@(labuladong的算法小抄)[dp, 双指针]
leetcode 5. 最长回文子串
题目描述
解题思路
参考:labuladong的算法小抄P373
dp
时间o(n²),空间o(n²)
注意与最长回文子序列解法的区别。子串必须要求是连续的,因此,如果定义dp[i][j]
表示s[i...j]
最长回文子串的长度,则由dp[i+1][j-1]
无法推出dp[i][j]
class Solution {
public String longestPalindrome(String s) {
int n = s.length();
if (n == 0 || n == 1) return s;
if (n == 2) return (s.charAt(0) == s.charAt(1)) ? s : s.substring(0, 1);
/* 记录最长回文串的长度,起始下标 */
int maxLen = 1, maxBegin = 0;
/* dp[i][j]表示s[i...j]是否是回文串 */
boolean[][] dp = new boolean[n][n];
for (int i = 0; i < n; i++) Arrays.fill(dp[i], true);
/* i从下往上,j从左往右遍历 */
for (int i = n - 2; i >= 0; i--) {
for (int j = i + 1; j < n; j++) {
/* dp[i][j] = (dp[i + 1][j - 1] && (s[i] == s[j])) */
dp[i][j] = (dp[i + 1][j - 1] && (s.charAt(i) == s.charAt(j)));
/* 如果当前子串是回文串,且长度大于maxLen,则更新最长回文串 */
if (dp[i][j] && (j - i + 1 > maxLen)) {
maxLen = j - i + 1;
maxBegin = i;
}
}
}
return s.substring(maxBegin, maxBegin + maxLen);
}
}
双指针
时间o(n²),空间o(1)
class Solution {
/* 记录最长回文串的长度,起始下标 */
int maxLen = 1, maxBegin = 0;
public String longestPalindrome(String s) {
int n = s.length();
if (n == 0 || n == 1) return s;
if (n == 2) return (s.charAt(0) == s.charAt(1)) ? s : s.substring(0, 1);
for (int i = 0; i < n; i++) {
/* 寻找长度为奇数的回文子串 */
palindrome(s, i, i);
/* 寻找长度为偶数的回文子串 */
palindrome(s, i, i + 1);
}
return s.substring(maxBegin, maxBegin + maxLen);
}
/* 从s[left]和s[right]开始向两边扩散,扩散的同时并更新最长回文串 */
private void palindrome(String s, int left, int right) {
/* 防止索引越界 */
while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
left--;
right++;
}
/* 更新最长回文串。注意:扩散完之后,最长回文串为s[left-1...right+1] */
if (right - left - 1 > maxLen) {
maxLen = right - left - 1;
maxBegin = left + 1;
}
}
}