剑指offer 55 - II. 平衡二叉树
题目描述
解题思路
先序遍历,计算深度
判断以 root 为根节点的树是否是平衡二叉树,需要同时满足以下三个条件:
- 左子树和右子树的高度差不超过1
- 左子树是平衡二叉树
- 右子树是平衡二叉树
时间:o(nlogn) 空间:o(n)
class Solution {
//判断以root为根节点的树是否为二叉平衡树
public boolean isBalanced(TreeNode root) {
if (root == null) return true;
int leftDepth = maxDepth(root.left);
int rightDepth = maxDepth(root.right);
return Math.abs(leftDepth - rightDepth) <= 1 && isBalanced(root.left) && isBalanced(root.right);
}
//定义:计算以root为根的树的最大深度
public int maxDepth(TreeNode root) {
if (root == null) return 0;
//左右子树中的最大深度加1
return 1 + Math.max(maxDepth(root.left), maxDepth(root.right));
}
}
后序遍历,剪枝优化
时间:o(n) 空间:o(n)
class Solution {
//判断以root为根节点的树是否为二叉平衡树
public boolean isBalanced(TreeNode root) {
//如果最大深度是-1,则不是,否则是平衡二叉树
return maxDepth(root) == -1 ? false : true;
}
//定义:计算以root为根的树的最大深度,同时判断是否是平衡二叉树,如果是则返回最大深度,否则返回-1
public int maxDepth(TreeNode root) {
if (root == null) return 0;
int leftDepth = maxDepth(root.left);
if (leftDepth == -1) return -1; //剪枝
int rightDepth = maxDepth(root.right);
if (rightDepth == -1) return -1; //剪枝
return Math.abs(rightDepth - leftDepth) <= 1 ? 1 + Math.max(leftDepth, rightDepth) : -1;
}
}