问题:求下列函数的零点:
下面式算法的图解:
以上是割线法图解的过程:
1.给定初值:x=0, x1=0.1;
2.计算x,x1对应函数上的点y,y1;
3.通过y,y1点画出割线交x轴于x2;
4:替换:x=x1,x1=x2;
5:再求出x2对应的函数上的点:y2
6.通过y1,y2再作割线交x轴于x3,
7.替换,循环下去,x最后将逼近零点
问题简单化:
已经有x,x1,求解出f(x),f(x1):
再用:x1=x2;x=x1;这样替换,循环去逼近零点。
这个算法和牛顿迭代法的优点在于不用求导函数:
C语言代码:
#include<stdio.h>
#include<math.h>
//原函数
double f(double x)
{
return cos(x)-x*exp(x);
}
int main()
{
int count=0;
double x=0; //设置迭代初值
double x1=0.2;
while(fabs(x-x1)>=0.000001)
{
count++;
double tmp=x1;
x1=x1-f(x1)*(x1-x)/(f(x1)-f(x));
x=tmp;
}
printf("牛顿迭代法结果:%lf\n",x);
printf("迭代次数:%d\n",count);
}