c语言割线法解非线性方程,求解非线性方程组的割线法.pdf

253b171540df25e1b84436cbe50dfc72.gif求解非线性方程组的割线法.pdf

求解非线性方程组的割线法 王德人 摘要 本文提出 了求解非线性方程组 F X 二 的一般钊 线 法的建立过程 得到了 一个更 为一般的 钊 线程序 并利 用 已得的 结果 给出 了两个有效葬法 它们比之两点序列钊线法 1和 n下 l 点序列钊线法等f 在计算量方面或 是在收敛速度方面更 为优越 最后 我们证明了井法 的局部收敛性与收敛速度 亦进行了其法的有效性分析 对于非线性方程组 F X 二O 1 其 中F为给定在区域D CR 上取值于R 的向量值函数 简 记为F D 二 R R F X 的各分量 i f X i 1 2 n 为定义在区域DO R 上 取值于R 的实值函数 我们建立 了两个不依赖于F的F r e c h e 导数的新的迭作算法 通过算法的有效性分析 证明我 们 的新算法比起 已知 的离散牛顿法 两点序列割线 法 n 1 点序 列割 线法以及 St e f f ensen 方法等 均为优越 当维数 n 较大时 一 新算法还优越于B r e n t一B r o w n 方 法 m 1 的情形 别 对于新算法 的局部收 敛性 文中作了严格论证 还得到敛速阶 的估计 这是算法有效性分析的基础 在本文 的第一段中 我们建立了一类极为广泛的 迭代程序 它是为引出新算法而建立的 一 二类拟牛 顿法 熟知的近似解方程组 1 的牛顿法有形式 Xk Xk 一 F Xk 一 F Xk k 0 l X 为给定的 初 始近 似 F 产 Xk 为在X Xk处F的J co i b 上 将F Xic 用矩 阵A k近似 替代 则 2 有形式 2 矩阵 如果 在某 种 近似意义 X卜 二 Xk 一 A 一 灸 F Xk夕 我们称迭瘫序 3 为拟牺法 k 二 0 1 3 取蔚呱必的近似矩灿的磁是多种多样今产 蜘 拟牛顿方程 F Y 一F X A Y 一 X 4 出发 去建立这种近似关系 务齐于妻 亨 80年3月注习日收至 DOI 10 13885 j issn 0455 2059 1980 04 004 第 碑期 录解菲线桂 方程组的割线接 且在其附近取 Zn 个点 Xk i 乏 于 为此 假定 Xk为已知 知F X k i F Yk i i A Ak 则得 Yk i i 1 2 1 2 一 n 今让方程 4 一 在此2 n个点 上 满足 F Yk i 一 F X k i Ak Y女 i一 X女 i i z 2 n 若引进表示 Xk Yk 一 Xk Yk n 一 Xk n Fk F Yk 一 F Xk F Yk 一 F Xk Xk Fk分别是 n Xn 阶矩阵 于是 5 可表示成下面 的矩阵方程 Fk Ak Xk 由此容易看出 若矩阵 X k非奇异 则 由 6 可唯一确定 Ak Fk Xk 一 又若 Fk非奇异 财A k有逆 且有 A了 X F 一 今使 3 和 7 联立 得 5 6 7 Xk 十 二 X 一 A 一 立 F Xk Ak Fc l Xk k岁 n 8 我们特别称拟牛顿程序 8 为广义割线程序 因为矩阵 Xk Fk的确定 完全取决于F和2只个点X补 i Yk i i 二1 2 n 所以对Zn个点的不同选择 可以得到一个矩阵类笼A砂 其中任一矩阵Ak 均对应着一 个迭代程序 8 因此 要取得有效性高的算法 只需对给定的万 适当选择Zn个点便 可得到 二 2尽个点的具体选择 I 点组Xk i 1 2 n 为震合的情形 在 土 中定义了一般割线法 它是取点为 X k i Xk Yk i Yk s i 1卜2 二伙 n 此时 X k Fk分别有形式 Xk Yk 一 Xk Yk n 一 Xk F k Fz Yk z 一 F Xk 由 9 10 可得Ak 将它记为A龙 s 有 A止 s Fk 不k 一 将它与 3 联立即得 F行 卜 F x 9 10 兰 4 州夭孚李报 1 级 50 年 21 月 容易看出 况下得到的 由 9 20 确定的A麦 s 是X X i z 2 二 n n 个点重合的情 所以矩阵类 A止 s 是 Ak 的一个子类 在矩阵类 A走 s 中 i 两点序列 割线法 如取 Yk i Xk I任k es 其中 矩阵H k 可取为 IJ 二D iag h k 我们可进一步取得一些有效的特殊算法 i 1 2 n 1 1 h孟 趾 h k 一 h孟 七 子 e了 o 0 i o o 显然 此时所得的 xk Di ag h k h孟 k 是非奇异的 于是可得矩阵A止lS h k h监 k 笋 22 A 51 瓜 1 v tt 二 二 气r A k 宁工飞ke l少一r 气Ak少少5 f k l 一卫一 一 F x k Hk e 一 F Xk 仁 k 13 特别 若在 12 中取 h厂 k x k一 一x 扩 孟 i 1 2 n 14 x 产 一 材 k 分别为向量X卜 从的第峥分量 将 1 3 与 3 联立 便得到 1 中 的两点序列割线法的 第一 种形式 若在 12 中取 h厂 趾 二o fF X i i 2 n 此时联立 13 与 3 就构成了 2 中所定义的离散牛顿法 1 1 中的矩阵Hk亦可取为 厂 h k h 趾 h k H hf h老 k h k h 啥 笋 h k l上 J J 第 4 期求解非线性方程组的割线法 之您 若引进矩阵 e e活一e 0 0 l 0 e二一en一 15 0 i 1 2 n 一 尸 砂 了 则 可得矩阵 A 走 S 一 F P Xk P 一 一工一 F x h k 一 F xk h Ik 万 l r v 飞f z 义二 h孟 k 名h k e j 一 F X k j 1 n一1 j 彗 广 犷 j 特别 若取h i k i 1 2 另一形式的 两点序列割线法 如果让 h厂 k f X i 1 n 为 1 4 于是得到 1 中定义的计算量更少的 2 n 并代替A廷 S 或 A 走 S 中的 h扩 i 1 2 n 则可相应地得到矩阵A护 或A妾 由矩阵 A丈 5 3 A盛 S 可分别构成两种单点t S ff e nsen 迭代程序 在 1 中还引进了多 点St e f f ens e n 方法 它同样可作为程序 8 的特例 11 n 1 点序例割线法 仁 对于矩阵类 A走 我们还可取点 Y k i Xk一i i 1 2 n 此时 可得 Xk二 Xk 1 一 Xk X卜 n一 Xk FI 二 F Xk 一 F Xk F Xk n 一 Xk 弓1进矩阵 15 则得 A 少 Fk P X P 一 二 质 效 风 一 其中 Xk 二 Xk P Xk 一l 一 Xk Xk 一 n一 一 Xk 一a 扩 F七二 Fk P 二 F X上 一x 一 F X篮 F X女 一 一 一 F X七 于是得到迭代程序 幼 兰 州 天 学学 一 报 z g Bo 年 1 2 月 X k X 一 A 盛 5 5 一 F X k翔 16 此 即熟知的 n 1 点序列割线法 亦称线性正 割法 关于Y k i i 二 1 2 n 的其 它选择 在 1 中还有讨论 不过它们都是基于 Xk i X以i 二1 2 n 的条件下进行的 都可以作为本文程序 8 的特 例 对于 Xk i i 1 2 i l 为不重合的情形 正是本文需要进一步讨论的 亦就是我们给 出的新结果 五 点组Xk i i 1 2 n 为不重合的情形 i n 点割线 法 对于点组X k i i 1 2 n 为不重合情形的第一种取法是 Xk s X卜 s i 1 2 n 而Y k i取为 Yk s X卜s h卜ie卜i Yk 一i i 1 2 n 其中假定了X卜i i 1 2 n 为已知 h卜i斗 一切i k 为给定 而 向量 ek i可 采取下述方式选取 当 k rn r 1 2 则取 ek一i er n一j en 一 j 而 e 袭j 二 rn k r 1 n ek er n j e n J 0 一 1 0 犷 0 j 0 1 n 一 1 r 1 2 二时 则取 1 j n 其中 叮 0 5 1 0 0 此时 对k rn r 1 2 一的情形 得矩阵 A孟 N F Xk 一 产 尹 六 F Xk 一 h 一二 e篮一 F Xk 一 一 1 百 气 入k十 h胜 e上 一 入k J 17 对于 rn k 因为第K次迭代的矩阵A廷 N 与第k 1次迭代 的矩阵 气全 仅有一 列不相同 又 因 k钾 一切 故 X不可 能出现退化现象 因此 与上面提到的两点序列割 线法 离散牛顿法以及tS e ff e ns en 方法等比较起来 n 点割线 法的计算量大大减少 与 n 1 点序 列割线法比较起来 虽然 n 点割线法 在每一迭代 步中比 n十 1 点序列割线法要多算一个向量值函数 但是由于 n 点割线法中的么X k的 非奇异性 从而线保证新算法的顺利进行 n 1 点序列 割线法则不然 i i 两步序列割线法 作为第二个新建立的迭代算法 我们取 Xk 愁 X卜i Yk i Y卜 i i O 1 n 一 1 这里假定X卜 i Yl 一i i o 1 n 一 l 和F X卜 i F Y卜 i i o z n 一 1 均 已知 此时 可得矩阵 A竣 N 一 Fk Xk 一 其中 Fk F Yk 一n 一 F Xk 一 下 Y k 一 F Xk 二 Xk Yk 一n 1一 X卜 n 工 Yk 一 Xk 两步序列 割线法则由以下两迭代 式构成 X Y k一 A廷 N Z 一 F Yk k n ty k X 一 A孟 NZ 一 F Xk 2 0 两步 序列割线法 20 的特 点与 n 点 序列割线 法 一样 每一迭代 步 中亦只需计算 2个 向量值函数F Xk F Yk 计算量 与求解问题的维数无关 现在我们集中对 中所诊讨的两个新算法 19 20 进行收敛性和有效性 分析 32 兰州 大学学 二 1 9 08 年 1 2 月 三 算法的收敛性分析 对于 二 五 中所给出的迭代程序 19 和 2 0 我们证明 了它们的局部收 敛性 同 时亦给出了它们的敛速阶估计 这里的证 明方法完全可以用去论 证 二 I 中所指出的各种算法的 收敛性 工 迭代程序 1 9 的收敛性 引理 1 设F D R n R n于 包含 X F X o 的 某邻 域s 二 D上 连 续 可微 且 F X 非奇异 则存在球 S X X 一 X 各 各 o CS 对于X 一 y 一 任S k n i 二 o i n 一 矩阵A U 一切k 均非奇异 且存在常数刀 o 成 立 l A泛 N 一 l 成 证明因为证明与k的取值范围无关 为确定起见 证明对 1 7 进行 利用 向量 值函数的积分形式的 中值定理 可将 17 定义的矩阵A止 N 改写成 A N I F X卜一 h 一 k一 e 一 F x thkek ek dt 在上 式 两端分别减去F Y 签 并利用 e l c 一 i 1 n 一 1 的定义 A盛 一 F X I F X卜 n th卜 二 e k 一 一 F X 铃 F X hkek 一F X e 得 e卜 们 对上式取范数 得 A盛 N 一 F X J F X卜 一 h卜 一 卜 一 一 F X 卜 一 F 尹 x th 一F x e k 一 dt 利用 R n 中范数的等价性 知存在只依赖于范数的常数日 O 成立 A k一F 尹 X苗 1 提日In aX nlaX 0 t 10 i n一 1 1 1 F 尹 X卜i th卜ie卜i 一F X e卜i 成日 n aX 刀l aX 0 t 1 0 i n一 1 F Xk 一i thk 一 ie卜i 一 F X 份划 2一 今侧 F X 一 l 由F x 的连 续性假定 对于满足 专 的任何 存在 丫尸 各 0 当X卜 i Y卜105 时 成立 m ax m ax llF X女 一i thk 一 ie卜i 一 F X 蕊 0 t 1 0 i 二n一 1 于是有 A 奢 一 F x 卜日 由于 l卜 F X 一 A 扩 l F X 一 F x 一A 令 f 第或期 求解非线性方程姐的割线法3 多 引 F X 一 I F X 一 峨 N 蕊丫日 0 S 对任何 初 始近 似i X i Y S 二 1 一 2 n 和 目毛M各 一切k 户 M为与k无关的正常数 当 q L 日 z M i 乙 1 24 q年M 成1 一 25 时 由 n 点割线 法 19 确定的迭代 序列 X k 二S 目 收敛 于X 舒 证 明今假定 巳有X l X Z X n X l 巧 则由 25 可知亦有Y Y Y koS 于 是 由程 序 19 可得 X 一 X X 一 X 一 A谴N 一 F X口 1 一 义 N l x l 一 x 朽 一 F x 户 一 A 泛 N 一 A止 一 F X Xk一X 一 F X 一 F x 一 F尹 x x 妙 在 上 式两边取范数 有 X k一X r毛 A I N 一 一 A N 一 F尸 X 一IX k一X 1 rF xk 一F x 一 F x x 一X 1 1 毛 A N 一 l 一 鑫 一 F X Xk 一 X l L X X 2 再 由引理 1 得不等 式 X k一X 蔺 卜 A泛 N L 菠n aX 0 i n 1 l 一 Xk 一i一 X性l千 五 贫 一 孙 讶 一 咖 X X 阵 咖 一 1 M 十 门 乙 降 一 X 卜 q风 一 x 护 t招6 兰 州 大 学学 一报 z 亏云 d 牟 12 月 同时 根据Y k 工的 定义亦有 1 1 Yk 十 一 X 铸 蕊 q 五 压 乙镇各 2 7 由 26 2 7 可知Xk 1 Yk es 于是由 n 点割 线法 19 所产生的序 列 Xk CS 再由不等式 2 6 可得 IX k 一 X 带 1 qk 一 翎X 一 X 备 故 当k c o 时 有 X k一X 0 这就证明了 19 的局部收敛 性 为得到 点割线法的超线性敛速 我们让 由 17 1 8 定义的A谴 N 中 的h 分 别取 h i O F X 2 5 或 h i O X i一 X 2 9 由不等式 26 对于i h的上述两种取法 均可得到估计式 nX k 一X 谷 1 用X厂次 丽不一义铸 刀 l aX 0 i n一 1 l X卜 一X l 30 其中 以为与k无关的正 常数 由于 当k c o 时 刀 aX O i n 一 1 X卜 i一 X l o 故有 l 搬 会 结甚 一 0 一 k一 它等价于 IX k 一 X 价 e刻X 一 X 其中吐 0 k c o 所以当i h 分别取 28 或 29 时 n 点割线 法均具超线性敛速 我们还可利 用不等式 3 0 去证明 当i h分别 取 28 或 2 9 时 n 点割线法的 敛速阶是由方程 甲 1 入 久 n 一久 刀 一 i O 肚 的最大正根所确定 容易证明 方程心31 的正根具有下列性质 1 方程 3 1 有唯一正根 二 1 2 2 单调 下降性 即 n n T 为方程 甲 z 入 入 一入 n 一 l o 唯一正根 二互 1 2 l im n一知O Tn 竹 汁 关于方程 31 的正 根的具体确定 将在下段分析算法有效性时 给出 互 迭代程序 20 的收敛性 引理 2 设F D二 R n o R 于包含X叹F X 0 的某 邻域5 C D上连 续可微 且 F 产 X 怜 非奇异 矩阵 X于s一致非奇异 l 狈吐存在球S 对于X卜 Y 一 巧 二切匆杂 n 室 i t资毋准 少n 一 互 X X 一X 势 乙 各 o CS 矩阵A奋 N 于S 上 非 奇异 且存在正常数 成 立 A oN 一 一 第 4 期求解非线性方程组的割线法3弓 证明由于 A 泛 N 一 F X Fk Xk 一 一 F X F 一 F X 器 Xk X 一 F Yk 一n 一 F Xk 一n 1 一F X Y k一 n 1一 Xk 一 1 F Yk 一 F X 一 F产 X Y 一 X X 二 I F X卜一 Y 一 Xk一 一 F X Y 一 X卜一 F Xk t Yk一 Xk 一 F X Y 一 X X 一d t 对上 式取范数后 得 泛 N么 一F X I F X 一 Yk一X卜一 一 F X Yk 一 一 X卜 十 F 产 Xk t Yk一Xk 一 F x Yk 一Xk 一 X k 一 r d t 利 用R n 中范数的等假性 存在依赖范数的常数日 0 a 0成立 A 廷 N 一 F X 1 日m a二 n laX F 尹 Xk 一 t Yk一i一Xk 一 i O镇t 10簇i n石1 一 F X Yk 一i一 X卜 i 川 X k 一 日 a m ax 一 m a k IF 双 一 i t Yk一i一X卜 0簇t 10 i n 一 1 一 F X Xkl日 八Xk 一 由于 X的 一致非奇异性 故总存在C o 使 成 X训 1 1 X 一 成 C 于是有 l A止 N Z 一 F X 11簇a日C 衬 刀laXnlaX 0 t簇1 0 i镇 n一1 经 F 产 Xk 一i t Yk一i一X卜i 一 F X 1 32 二 二 1 二 今令1 厂 入勺 一 二 Y 由尸 入 的连续 性 对士满 足 O E 0 r场尸 当X 一 歹Y卜 S 一切k n i 0 1 n一 1 时 成立 11aX月laX 0 七镇10簇i n 1 I F Xk 一 i t Y卜 一X卜i 一F 产 X 1 1簇 于是有 A泛 N Z 一 F X a 日C 由于 x 一 F x 一 A止 N Z l簇1IF X竺 一 11 A姿 N Z 一 F X 簇 a 日C 又 因 工 对 邻域SC D内构成 X的一 切X Y心 矩阵 X均非奇异 郎兰 州 大李李 报 1 9 80 年 12 月 F X 一 A 盛 N Z I 一 I 一 F X 一 A孟 N Z l 一 lJ 知矩 阵 A 盛 N 关于球S 非奇异 且成立 N Z 一 JI一J 一 一 F X 二A止 2 厂 F X Y 下 一 万汾 一一1 1 上一 丫ap e 证毕 容 易 看 出 在引理 2的 基 础上 若附加条件 IF 天 一 F 产 X L X 一 X 一切X o S L为正 常数 则 由 32 可得 日A止 N Z 一 F X l I 解 L m ax IX卜 一 X Y卜 i一 X卜 i 0蕊i成 n一 1 蕊 3a日CL ax X卜 i 一 X 份 1 1川Y益 一 i X 公 l 33 O簇i毛 n一1 利用以上挂 实 我们可以比较方便地对 两步序列割 线程序进行收敛性分析 事实上 我们可以利 用定 理 1的证明方 法 先由 2 0 可得 X 十 一 X Yk 一 X 一 A止 N Z 一 一 F Yk A泛 N Z 一 A泛 K Z 一 F X Y 一 X 一 F Yk 一 F X 一 F 尹 X 签 Y k一 X兰 于 是有 X k 一 X 簇 i A孟 N Z 一 A 卜 一尸 X Yk一X F Y k 一 F 笨约 二 F X Yk一X幻 由刁二等式 32 IX k 刻 A廷N Z 和引理2 得 一 一A孟 N Z 一 F X 一Y 二 X L一 IYk 一 X zr 一 X宁 l 簇月 3a 日C 下z Lm叙 仑 m a二 X卜 一 X i 卜 Y k一i一 X 朴 I 0 i蕊n 一 1 j l Y 跳一X 睦l l y 姑 X户 比 一 若令母 劝 3a 日C 1 L ax u l ax IX 一 i一 X 斧 1 Y 一i 一 X 分 JI Y k一X 公 J m ax IIY卜 i一 X 喊 i 一 1 二 钊和 一 则 上不等式成为 IX 十 一 X I 蕊毛 m ax liy k一i一 X 带 I IIY 一 X 劳 l 34 毕 0提i簇 n一 大 丫 另外由 20 经过上面完全相似 的推 导 可得不等式 11Y k 一 X 荟 l 刀 3 a 日C 1 Lm ax m ax l X卜 i一 X 铃 lly 一 i 一 X 公 4 吓谈 n一 1 一 U X 一 X 份 X 一 X 第 4 期 求解非线性方程姐的割线法 3 7 若令 m a x nla X 0 簇 i n 一 1 X k 一 一X 苦 Y 一 i 一 X IX k 一 X 铃 1l laX O越i蕊n 一 1 了k 一 i一 X 日 并利用 34 可得 1Iy 十 一 X 公 l簇 月 s a 3C 1 L m ax 0 i n一 1 Y 卜 一 X 公 IY k一 X 苦 毛 nax j Y k一 一 X 釜 l Y z 一X 劳 1 35 0共i n 一 1 今让 q 二 1 3a 日C 1 J各乙 n十 1im屯 n z 3 6 同时 方程 31 与方程 36 的正 根 屯 t 下 由此 注意不等式 Y 一 X 公 毛毛 2 Y k一 X 井 nlaX Y 一 一 X 必 2 0毛i成 n 一 1 我们容易得到两步序列割线法 的敛速阶是由方程 3 6 的 唯一 正根 C 1 2 所确定 这 表明在花费同样的函数值计算次数的条件下 迭代程序 2 比 1 9 有更快的收敛速度 四 算法的有 效性分析 O otro w s ki在c3 中指 出丁迭代过程的有效指数E 概念 具体定义是 加 兰 州 大学学 报 1 9 50 年 21 月 1 E I p件 其 中 p 为迭代程序的某 种敛速阶 林为每一迭代步中所需要的函数求值次数 作为衡量迭代过程的有效性指标 这里可将 a 定义为 p 1im 109 Xk 卜 一 X 份 1 1 0 9 Xk一X 公 k c o 他是 把 E 37 B ren t 在 4 中 对 o s t r o w s ki的定义作了如下修改 E Z l o gp 林 它是E 的对数 为便于比较 我们取E Z 作为衡量迭代程序 有效性的标准 工 迭代程序 1 9 的有效性分析 由 二 中论讨可 知 迭 代程序 1 9 在每一迭代步 中只需计算两个函数值F X砂 F Y I 而且由 37 定义的敛速阶 p 是由方程 31 的 最大正根 1 2 确定 即 p 于是 由它 2 的定义 得到 19 的有效性 指标为 E A谴 N 二 109 2 今将其与 2 中提到的算法 进行比较 我们得到下表 A 罗 1 0 105 E N 0 10 0 E Z A 护 1 0 069 0 03 7 0 024 0 018 0 015 0 0 13 0 010 0 008 竺 旦 些 生 0 019 0 010 E E E Z A 是 5 2 E T 0 0 0 1 05 5 5 9 1 2 0 0 0 021 1 10 046 6 6 0 0 11 少 0 010 0 007 007 0 06 004 003 0 005 一上旦 竺一 翌竺 一一生i些 一 兰望 一 0 00 40 0 0 4 0 0 0 3 0 0 02 0 00 3 0 002 翌 1王 0 一 008 石丽 一 一 010 一 一 n 一 一 卜 一 卜 一 一 卜一 l 一 劝 一 阳 一 昭 一 4 7一鸽 一 3 0一 2 5一2 0一1 6一 g 2一 一0 一 一 一 一 一 一 O一 一 11 一 l旧一 IJ 一 一 一 勺 一 愧 Jn 0一 U 一 n U一 0一 八U一 0 一 八U一nU一 一 00一 J盆 一左 一 匕 一O口一no一 一卜J一 注 一 一6 1一1 8一n一0 8一0 6 一0 5 一0 4一0 3一 下一月州 一 卜 卜一 r 一 r 一 目一ir 一 I f 一 一 月 土 一J 二 一1上一 上一d 上 土 1 一 上 一 n 2 一 刀 一 旧 一 沟 泊泪 一一 一 0 0 一 产 名 一1一2一34 5 7 一 1 一 上表中E N E A诬 s E N 1092 n E Z 人止 S E T 分别为 2 中算法N 取m 1的情形 E Z A建 S 二 l og l 6 1s n 十 两点 序 列割线法 E A 止 5 2 1091 61 8 n 两点序列割线法的 另 一种形式 E T 21092 n 从表 中所列教据看出 一 肉 二 却开始 2 中算法Tm 取m 1的情形 迭代程序 1 9 具有最高有效性 在几二4 0么 探 第 4 期求解非线性方程组的割线法 3 今 前 啥了 B r 卜B ro w 方法m 二 产 1的情形外 程序 1 9 比其它算法均有效 这就表明算 法 19 是一个好算法 当然 它不如 h 1 点序列割 线法是有效性来得高百但 19 容易实现 计算过程中不会出现矩阵 X退化的情况 而且收敛速度要比 n 1 点序 列割线法快 这些是程序 1 9 的优越之处 亚 迭代程序 20 的有效性分析 由 二 中讨论可知 20 的每一迭代步中同样只 需计算两个向量 值函数F Xk F Y 而且由 3 7 定义的敛速阶 p 是由方程 3 6 的最大正根邑 碑 i 2 确定 即 p C 一 于是得算法 20 的有效指标为 E Z A廷 N 109乙 n 2 因为已知 几 一切n 故算法 20 比 19 有更高的敛速阶 而每一迭代步中 的函数值计算次数相 同 所以 2 0 比 19 具有更高的有效性 不过 20 的局部收 敛性与 n 1 点序列割线 法一样难于得到验证 这是算法 20 的不足 之处 参考资料 1 J M O r teg a W C R h e inb o l a t It er a tiv e S o l ntion so f N on li n ear Eq uations inS eve r e lV ar i a b le s A e a d e m ie P r ess N e wY or k 1970 2 赵瑞安 非线性方程组的计算复杂性研究 应用数学与计算数学 2 19 79 3 A O s tr o w ski S o luti ono fEq uat i onsa dsy ste m so fEqu at i on s A eadem ie P re s s N e wY or k 1973 4 R p B re n t S o m e Ef fi c i en t Alg or il n m s f o r S o l v i n g sg s te单5 o f N on li n e a r Egu ati on s S IAMN a m er A na l 1 0 1973 Th e S e e an t M etho df o r S o lvin g S了st e m s o f l N on li ne ar E qu a tio n 平 a g D 口一 J en Abstra et Thi s p aper p re s e n t s f ors o l v ing syste m s o f ane s t a blish e d p r oee ss o f ge n e ra l n o n li n ea re 妞 at i on F X 0an d se Can t In ore 址ethbd 邵衅 r 衫 S ee an t m etho d15 o btai n e d U sin gthe a bo v e一o bt a i ne d re s u lt s w e h ave giv e n tw oe f fi e i en t a zg or ithm s whi e h are m o r es让pe r i or tha丘 一 the se qu en tialtw o一Po intm etho d an d seque n tial n 1 一 p o i n tm etho di n the 如 an tity o f e a l eo lati o 五 o r t五e ra te o r eooe rgeoe e Fi n a l zy w e p r ov 已th e l oe a l o 时 erge n oea nd tho ra to o r c 石 甲 石 r 兹 eocoo f he L 宫 or it 卑 a od a益a妙 价 fi 最 e琳了 时 19听全t m s

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值