磁场与电场及相对性

麦克斯韦方程组揭示了电场和磁场的本质,两者在相对论中展现出深刻的联系。静止时电场和磁场独立,但运动时速度成为连接它们的桥梁。通过洛伦兹力和相对性原理,解释了运动电荷在磁场中的行为,并通过实例讨论了不同参考系下电磁场的等效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

麦克斯韦方程组完全刻画了电场和磁场的形态。

在静止情况下,Maxwell方程是两组分立的方程,分别描述了电场矢量和磁场矢量;一个矢量场完全由其散度和旋度唯一的确定,描述电场和磁场的两组方程正好是其散度和旋度。

静止坐标系下磁场方程:

D=ρ

×E=0

静止坐标系下磁场方程:
B=0

×H=J

可见,电场和磁场完全是分离的两种物质。

对于一个带电体,众所周知,会受到另一个带电体的作用力,我们也知道这个作用力是带电体在空间中产生的电场在另一个带电体上的表现形式。库仑力为

F=qE

对于一个静止的带电体,放在一块磁铁旁边不会发生任何运动的趋势(假设带电体未被磁化),即不受力。但是,如果这个带电体是运动的,则会受力,即洛伦兹力

F=qv×B

直观上,会看到一个神秘的对应关系,对于任何一个带电体, E v×B 所起的作用貌似一样,冥冥之中是不是暗示着电场和磁场之间有一定的关联呢?

就是这样,电场和磁场之间还真是有联系。起着纽带作用的便是那个不起眼的速度 v ,这个 v 正是自然界内部所蕴藏的一个深刻理论—-相对性原理—-在机智的物理学家面前不小心漏出的尾巴。

从历史上看,相对性原理出现在Maxwell方程之后,但是,正是爱因斯坦对电和磁的研究才最终导致了相对性原理的发现,其实Maxwell和前辈们比如法拉第、安培等已经将相对性原理的尾巴揪了出来,而最终让其真相面世的是目光敏锐的老爱同学。

完整的Maxwell方程为

D=ρ

×E=Bt

B=0

×H=J+Dt

大道至简,大美无形。Maxwell方程以极其简洁优美的姿态展示了自然界关于电磁现象的一切本质。

可见,电磁是一家。静电和静磁只是特例而已。

关于电磁场在相对性原理中的一个有趣例子(Feynman物理学讲义13-6):

题目:假定一个负电荷以速度 v0 平行于一根载流导线而运动,基于以下两种参考系,会发生什么有趣情况。(a)坐标系固定在导线上,即 S 系;(b)坐标系固定在粒子上,即 S 系;
这里写图片描述

解:
建立一个圆柱坐标系,以向右为正。

对于情况a,这是大众情况,导线不动,电荷运动。很显然(sorry,高考遗留下的毛病,数学老师教的),电荷受到一个磁力,那方向如何大小如何?用洛伦兹力就可以搞定了。

(tips:解决高维物理问题最好用矢量运算,会有意想不到的好处)

速度矢量 v0=v0z^ ,磁场矢量 B(r)=Bθ^ ,这里把磁场写成 B(r) 是因为无限长直导线的磁场是旋转对称的,负号是因为电流沿着 z 方向。

那么洛伦兹力为(公式输入真烦人)
这里写图片描述
对于负电荷,力沿着径向指向导线。是一种吸引力。这就可以解释为什么两个导线电流同向时相互吸引,因为电子是负电荷!


对于情况b,就有点迷惑了。因为坐标系固定在粒子上,即粒子不动,而导线向着粒子原先运动的反方向以相同速率在运动。

因为粒子不运动,所以不会受到磁场力。但是一根通电导线外部存在电场力吗?很显然(大多数人都认为)是没有的,因为导体里正负电荷相等,对外没有净电场。

但是,老爱的相对性原理说物理规律不因惯性系的选择而有差别,即惯性系都是等价的,用数学化的语言说就是一切物理定律在洛伦兹变换下数学形式不变,即协变。

但是根据经验,a情况里粒子受到一个指向导线的力,而b情况里粒子不受力。

难道是老爱的相对论出错了?还是咱们的直觉不对?

其实,老爱能那么出名还是有一定道理的。经过缜密计算发现,咱们的直觉错了。所以,不要轻易相信直觉,也不要轻易相信牛逼的人说搞物理凭直觉,那为啥咱们的直觉往往不对呢?朗道、泡利、费曼等人经常说自己凭直觉搞物理,不要听这些大忽悠。

为了简化分析(这是物理学家最得意的描述方式,也是数学家最鄙视物理学家的地方),考虑粒子运动速率 v0 与导线里传到电子运动速率 v 相同的情况,即假设

v=v0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值