守恒定律、连续性方程和玻印亭矢量

本文探讨了守恒定律的重要性,包括动量、能量和电荷的守恒,以及它们如何体现对称性。文章还介绍了连续性方程在描述质量、电荷和能量流动中的关键作用,尤其是玻印亭矢量在电磁学中的应用,揭示了电磁波为横波的特性。此外,还提到了守恒定律与哈密顿力学、诺特定理的关联。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

守恒的东西总是人们乐于接受的,总是觉得冥冥之中有种神秘力量维持着这份永恒。

钻石恒久远,一颗永流传—–鲁迅没说。

确实,虽然这个世界瞬息万变,沧海桑田,中国更是日新月异,但总有些东西是守恒的,目前人们发现的有质量守恒、电荷守恒、能量守恒、动量守恒等,还有别的在某些条件下才成立的守恒。

在经典力学里,动量守恒是牛三定律的直接推论(见下面)。

在一个封闭系统里(没有外力,与外界没有物质或能量交换),假设存在两个相互作用的粒子,根据牛三定律

F1=dp1dt

F2=dp2dt

dp1dt=dp2dt

对上式做一个简单的处理,得到
ddt(p1+p2)=0


p1+p2=const.

动量守恒是空间各向同性(或叫空间平移不变性)的直接数学结果,也就是说物理定律不因所在位置的不同而存在差异。比如,牛顿定律在月球上也一样适用。

在哈密顿力学里,动量是位置的正则共轭量,两者在哈密顿流所构成的相空间里构成了一定的面积。

在线性变换下,面积守恒,且形状不会畸变;如果存在非线性力,则面积虽守恒但形状畸变,即所谓的混沌出现;如果出现耗散力,则面积不再守恒。

因为只要在相空间里存在粒子,则必定存在面积,此时一个位置会对应一个动量分布,同理,一个动量会对应一个位置分布,也就是说这两者没法同时确定,这也就是海森堡不确定性原理的一个体现。(其实,相空间里的一个位置动量共轭对,对应了一个粒子所处的状态)。但测量的时候就不再是这样了。

能量守恒也是一种对称性的体现,那就是时间。也就是说,物理定律不会随着时间的推移而存在差异,牛顿时期的三大定律到现在仍然成立(有人会说,现在老牛的东西过时了,有了相对论,但是,牛顿那个时代难道没有相对论吗?相对论一直都在,只是爱因斯坦在前不久才发现了它而已)。

其实,由诺特(一个热爱数学却备受冷眼的女数学家)定理可以直接推导出能量守恒。

该定理说任何连续一个对称性必定包含一个守恒量。除了时间平移不变和空间平移不变,还有个空间旋转不变,这直接导致了角动量守恒。开普勒面积守恒定律和行星在平面上的向心运动都是角动量守恒的体现。

与动量一样,哈密顿力学里能量和时间是一对正则共轭量。所以能量和时间没法同时测准,测不准原理的再次体现!

哈密顿力学看似是直接把拉格朗日力学做了个勒让德变换,即把广义速度变成了广义动量。

貌似只是数学上的一点改动,其实这一转换直接导致了对称性和守恒量在光天化日之下的关联,而目光敏锐的诺特找到了这种关联,并得出了诺特定理。

能量守恒说能量既不会创造也不会消失,只能从一点转移到另一点。

但这种说法有个明显的缺点,能量能从一个地方突然消失然后在另一个地方突然出现吗?显然是不可能的,超距作用已经被证伪。

一个地方的能量随着时间增加,只能是另一个地方的能量以能流密度的方式从该地方翻越崇山峻岭不间断的流到了这个地方。

就好比水流一样,不可能凭空突然出现一个泉水而另一个地方突然消失了一个泉水。只能是通过水管或地下水在泉水之间流通。

同理,电荷在某个地方堆积,必定是电流在那有流进或流出。

可见,连续性方程使得守恒定律更加严密化。

以流体为例,在

<think>好的,用户想了解工程热力学中的三大守恒方程,也就是质量守恒、能量守恒动量守恒。首先需要确认这三个方程在工程热力学中的具体形式应用场景。可能用户是学生或者相关领域的工程师,需要这些基础知识来解决实际问题。 接下来,得调用搜索工具查找这三个方程的表达式、适用条件以及例子。质量守恒方程应该涉及到控制体内质量的流入流出变化,可能积分微分形式都需要提到。能量守恒需要考虑热力学第一定律,包括热量、功内能的变化。动量守恒可能涉及到牛顿第二定律在流体中的应用,比如纳维-斯托克斯方程的基础。 需要整合搜索到的信息,确保每个方程的描述准确,并且用用户容易理解的语言表达。注意用户提到的格式要求,比如数学公式用$符号包裹,代码块用三个反引号,但这里可能代码较少,主要是公式。每个方程需要分开说明,可能按质量、能量、动量的顺序,每个部分给出数学表达式简要解释。 同时,要检查是否有需要区分的积分微分形式,或者是否要提到稳态、不可压缩等简化情况。例如,质量守恒在稳态下可能简化为流入等于流出。能量守恒可能需要区分封闭系统开放系统,而动量守恒在流体中通常用微分方程表达。 然后,按照用户的要求,避免使用第一人称步骤词汇,将内容分成多个方法或步骤,每个部分用换行分隔。确保每个方程的公式正确使用$或$$包裹,例如微分形式的质量守恒方程用$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$。 最后,生成相关问题时要基于这三个守恒定律,可能涉及应用实例、简化条件或与其他物理定律的关系。比如,如何简化质量守恒方程用于不可压缩流体,或者热力学第一定律在开放系统中的应用。确保问题具体且相关,帮助用户进一步深入学习。</think>工程热力学中的三大守恒方程是分析热力系统的核心工具,以下为各守恒方程的数学表达及物理意义: **质量守恒方程连续性方程)** 微分形式为: $$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$ 式中$\rho$为密度,$\mathbf{v}$为速度矢量。对于稳态流动($\partial \rho/\partial t=0$)且不可压缩流体($\rho$为常数),方程简化为$\nabla \cdot \mathbf{v}=0$,表示流入与流出控制体的质量相等。 **能量守恒方程(热力学第一定律)** 闭口系统表达式为: $$Q - W = \Delta U$$ 开口系统稳态流动形式为: $$\dot{Q} - \dot{W} = \dot{m} \left( h_2 - h_1 + \frac{v_2^2 - v_1^2}{2} + g(z_2 - z_1) \right)$$ 其中$Q$为热量,$W$为功,$U$为内能,$\dot{m}$为质量流量,$h$为比焓,$v$为流速,$g$为重力加速度,$z$为高度。 **动量守恒方程(牛顿第二定律扩展)** 积分形式为: $$\frac{\partial}{\partial t} \int_{CV} \rho \mathbf{v} dV + \oint_{CS} \rho \mathbf{v} (\mathbf{v} \cdot \mathbf{n}) dA = \sum \mathbf{F}$$ 微分形式(Navier-Stokes方程)为: $$\rho \left( \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g}$$ 式中$p$为压力,$\mu$为动力粘度,$\mathbf{g}$为体积力。该方程描述了流体动量变化与压力、粘性力外力的平衡关系。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值