代数方程解的存在性和唯一性(if and only if)

代数方程解的存在性和唯一性(if and only if)

1、存在性

定义一个函数 f:XY ,对于值域上的每一个 bY ,方程 f(x)=b 在定义域上有解吗

如果有解,那么该函数是一个满射,或叫 onto  (surjective) function 。所以,满射是解存在的前提条件。

满射定义: yY,xX,s.t.f(x)=y

2、唯一性

如果解存在,那么解是唯一的还是有很多

对于一个方程 T(x)=b ,如果值域上的每一个 b 最多有一个解,则函数T叫做单射或一对一映射,即 one to one (injective) function

所以,单射是解唯一性的前提条件。

单射定义: xX,yY,s.t.f(x)=yandx1x2f(x1)f(x2)

第一个例子。

身份证号函数 f :中国人身份证号。这个函数不是一个满射,因为有的人已经去世,身份证号
再没有对应的人了;但是这是一个单射,因为每一个中国人只有一个身份证号(理论意义上)。

第二个例子。

定义一个函数 f:RR+ xx2 ,这是一个满射,因为每一个正实数都存在一个实数域内的平方根。但很显然不是一个单射,因为任何一个正数都存在两个平方根,一正一负。

后记

1、可逆

如果一个函数 T 既是满射也是单射,即单调,则该函数可逆。因为满射保证了T1的定义域存在,而单射保证了值域的唯一性。

但是函数的可逆性并不能保证映射既是满射也是单射。因为一个不可逆的函数可以在值域的某个范围内是可逆的,比如 f=x2 ,在其单调区间上是可逆的,比如 [0,+]

2、复合函数

定义函数 f:CD 和函数 g:AB ,满足 BC ,则复合函数 (fg):AD 定义为

(fg)(x)f(g(x))

或者可写为
AgBCfD

注意,要使 fg 有意义,则 g 的值域包含于f的定义域。

一个直观例子。

定义 F 为父亲,M为母亲,则 FM 表示母亲的父亲,即外祖父;而 MF 表示父亲的母亲,即祖母。

可见复合算子是不满足交换律的。

F(FM) 表示外祖父的父亲; (FF)M 表示母亲的祖父。可见是同一个人。所以,复合算子满足结合律。与矩阵的乘法相似。

满射之间的复合仍为满射。

单射之间的复合仍为单射。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(内容同步更新到微信公众号python数学物理,微信号python_math_physics
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值