题目:给定一个含有n个元素的整型数组array,其中只有一个元素出现奇数次,找出这个元素。
分析:因为对于任意一个数 k,k^k = 0,k^0 = k,所以将array中所有元素进行异或,那么个数为偶数的元素异或后都变成了0,只留下了个数为奇数的那个元素。
#include <iostream>
int FindData(int arr[], int len)
{
int num = arr[0];
for (int i = 1; i < len; i++)
{
num ^= arr[i];
}
return num;
}
int main(int argc, const char * argv[]) {
int arr[] = {1,2,3,5,1,3,5};
int len = sizeof(arr)/sizeof(int);
printf("%d\n", FindData(arr,len));
return 0;
}
拓展:由 n 个元素组成的数组,n - 2 个数出现了偶数次,两个数出现了奇数次(这两个数不相等),如何用 o(1)的空间复杂度,找出这两个数?
分析:假设这两个数分别为a、b,将数组中所有元素异或之后的结果为x。因为a != b,所以 x = a^b,且 x!= 0,判断x中位为1的位数,只需要知道某一位为1的位数k(如 00101100,其中1对应的位数分别为2、3、5,所以k可以取2或者3,或者5),然后将x与数组中第k位为1的数进行异或,异或结果就是a或b中的一个,然后用x异或,就可以求出另外一个。
因为x中的第k位为1,表示a或b中有一个数的第k位也为1,假设为a,将x与数组中第k位为1的数进行异或时,也即将x与a以及其他第k位为1的出现过偶数次的数进行异或,化简即为x与a异或,最终结果即为b。
#include <iostream>
void FindNum(int arr[], int len)
{
int s = 0;
for (int i = 0; i < len; i++)
s = s^arr[i];
int s1 = s;
int s2 = s;
int k = 0;
while (!(s1 & 1))
{
s1 = s1 >> 1;
k++;
}
for (int i = 0; i < len; i++)
{
if ((arr[i] >> k) & 1)
s = s^arr[i]; // 得到其中之一
}
printf("%d, %d\n", s, s^s2);
}
int main(int argc, const char * argv[]) {
int arr[] = {1,2,3,7,1,3,5,6,6,5};
int len = sizeof(arr)/sizeof(int);
FindNum(arr, len);
return 0;
}