算法第四版---最小生成树Kruskal算法

本文介绍了一个使用C++实现的并查集(Union-Find)和Prim算法来求解带权无向图的最小生成树问题。通过UF类实现连接和查找操作,利用优先队列维护边的权重,MST函数计算并合并最小权重的边,直至生成树构建完成。
摘要由CSDN通过智能技术生成
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
#include<vector>

using namespace std;

class UF
{
public:
	int *id;
	int *sz;
	
	UF(int N)
	{
		id=new int[N];
		sz=new int[N];
		
		for(int i=0;i<N;i++)
		    id[i]=i;
		
		memset(sz,1,N);
	}
	
	bool connected(int v,int w)
	{
		return find(v)==find(w);
	}
	
	int find(int v)
	{
		while(v!=id[v])
		v=id[v];
		
		return v;
	}
	
	void unio(int v,int w)
	{
		int i=find(v);
		int j=find(w);
		if(i==j)
		return ;
		
		if(sz[i]>sz[j])
		{
			id[j]=i;
			sz[i]+=sz[j];
		}
		else
		{
			id[i]=j;
			sz[j]+=sz[i];
		}
	}
};

class Edge
{
public:
	int v,w,weight;
	
	Edge(int _v,int _w,int _weight)
	{
		v=_v;
		w=_w;
		weight=_weight;
	}
	
	int either()
	{
		return v;
	}
	
	int other(int virtex)
	{
		if(virtex==w)
		return v;
		else
		return w;
	}
	
	bool operator < (const Edge& e) const
	{
		return weight>e.weight;
	}
};

const int N=55;
vector<Edge> vec[N];
priority_queue<Edge> pq;
int v,ans;

void MST()
{
	int ver=0;
	for(int i=0;i<v;i++)
	{
		for(Edge e:vec[i])
		{
			int w=e.other(i);
			if(w>i)
			pq.push(e);
		}
	}
	
	UF uf(v);
	
	while(!pq.empty() && ver<v-1)
	{
		Edge e=pq.top();
		pq.pop();
		int p=e.either();
		int q=e.other(p);
		
		if(uf.connected(p,q))
		continue;
		
		uf.unio(p,q);
		
		ans+=e.weight;
	}
}

int main()
{
	cin>>v;
	for(int i=0;i<v;i++)
	{
		for(int j=0;j<v;j++)
		{
			int a;
			cin>>a;
			if(a!=0)
			{
				Edge e(i,j,a);
				vec[i].push_back(e);
				vec[j].push_back(e);
			}
		}
	}
	
	MST();
	cout<<ans<<endl;
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值