信号与系统读书笔记

第一章

1.信号与系统研究的是输入与输出的关系

2.单位脉冲
δ ( x ) = { 1 , x = 0 0 , x ≠ 0 \delta(x) = \begin{cases} 1 ,& x =0\\ 0 ,& x\not= 0 \end{cases} δ(x)={1,0,x=0x=0
单位阶跃
u ( x ) = { 1 , x > = 0 0 , x < 0 u(x) = \begin{cases} 1 ,& x >=0\\ 0 ,& x<0 \end{cases} u(x)={1,0,x>=0x<0
后者是前者的积分

3.时不变性,就是系统的行为不随时间而变。就是说系统的输出是输入的函数,而不是t的函数,即y(x)而不是y(x,t)
比如
y(t)=sin[x(t)]
这个系统就是时不变的,因为y可以写成是x的函数,与t无关

4.线性
y 1 ( t ) + y 2 ( t ) 是 x 1 ( t ) + x 2 ( t ) 的 响 应 a y 1 ( t ) 是 a x 1 ( t ) 的 响 应 y_{1}(t)+y_{2}(t) 是 x_{1}(t) + x_{2}(t)的响应\\ ay_{1}(t)是ax_{1}(t)的响应 y1(t)+y2(t)x1(t)+x2(t)ay1(t)ax1(t)

5.复指数信号
这是最基本的周期信号
高数里学的傅里叶级数,cos函数和sin函数是分开的,其实可以用复指数信号来统一,同样的频率中,cos和sin相差2分之PI的相位差

第二章 线性时不变系统

1.卷积定义

y ( n ) = f ( n ) ∗ g ( n ) = ∫ − ∞ + ∞ f ( t ) g ( n − t ) d t y (n) =f(n)*g(n) = \int_{-\infty}^{+\infty}f(t)g(n-t)dt y(n)=f(n)g(n)=+f(t)g(nt)dt

就像是图像处理里的高斯模糊
如何动态地理解这个公式,g(n) 就是一个函数,就像是高斯掩膜,
现在固定n,把t看作变化量,那么对于每一个n,f(t)g(n-t)是每一个t对最终的结果y(n)的一份贡献值。
相当于掩膜先以y轴对称,再向右移n个单位, 和f(t)相乘
注意:要先作镜面对称

计算
在这里插入图片描述

2.输入卷积化
离散的输入可以看着是输入与冲击函数的卷积

x [ n ] = ∑ k = 0 + ∞ x [ k ] δ [ n − k ] x[n] = \sum_{k=0}^{+\infty}x[k]\delta[n-k]\\ x[n]=k=0+x[k]δ[nk]
其 实 所 有 函 数 和 δ 的 卷 积 都 是 它 本 身 其实所有函数和 \delta的卷积都是它本身 δ

3.输出
h k [ n ] 为 线 性 系 统 对 单 位 脉 冲 δ [ n − k ] 的 响 应 h_{k}[n]为线性系统 对单位脉冲\delta[n-k]的响应 hk[n]线δ[nk]
那么由线性可加性得,系统的响应函数为
y [ n ] = ∑ k = 0 + ∞ x [ k ] h k [ n ] y[n] =\sum_{k=0}^{+\infty}x[k]h_{k}[n] y[n]=k=0+x[k]hk[n]
因为是时不变的系统 ,所以
h k [ n ] = h 0 [ n − k ] h_{k}[n]=h_{0}[n-k] hk[n]=h0[nk]
系 统 对 δ [ 0 ] 的 响 应 向 右 平 移 到 k 处 , 等 于 系 统 对 δ [ n − k ] 的 响 应 系统对\delta[0]的响应向右平移到k处,等于系统对\delta[n-k]的响应 δ[0]kδ[nk]
所以有
y [ n ] = ∑ k = 0 + ∞ x [ k ] h [ n − k ] y[n] =\sum_{k=0}^{+\infty}x[k]h[n-k] y[n]=k=0+x[k]h[nk]
y [ n ] = x [ n ] ∗ h [ n ] y[n]=x[n]*h[n] y[n]=x[n]h[n]

第二章 周期信号的傅里叶级数表示

1.特征值
把线性系统看着一个变换T,输入x(t)看成一个向量,如果Tx(t)=ax(t),那么x(t)就是特征函数,a就是特征向量
书上有证明
e s t 是 所 有 L T I 系 统 的 特 征 函 数 e^{st}是所有LTI系统的特征函数 estLTI
对 应 的 特 征 值 是 H ( s ) = ∫ − ∞ + ∞ h ( τ ) e − s τ d τ 对应的特征值是H(s)=\int_{-\infty}^{+\infty}h(\tau)e^{-s\tau}d\tau H(s)=+h(τ)esτdτ
其 中 h 是 系 统 对 单 位 冲 击 的 响 应 其中h是系统对单位冲击的响应 h可以看到特征值是单位冲击响应的傅里叶变换

证明简单,但为什么会想到复指数函数呢,这个我还想不明白

有了这个公式,那么对系统的研究,就可以分解为对特征值的研究
因此,将输入信号分解为复指数信号变成了问题的焦点
x ( t ) = a 1 e s 1 t + a 2 e s 2 t + a 3 e s 3 t x(t)=a_{1}e^{s_{1}t}+a_{2}e^{s_{2}t}+a_{3}e^{s_{3}t} x(t)=a1es1t+a2es2t+a3es3t
系 统 对 每 个 分 量 的 响 应 是 系统对每个分量的响应是
a 1 H ( s 1 ) e s 1 t a 2 H ( s 2 ) e s 2 t a 3 H ( s 3 ) e s 3 t a_{1}H(s_{1})e^{s_{1}t}\\a_{2}H(s_{2})e^{s_{2}t}\\a_{3}H(s_{3})e^{s_{3}t} a1H(s1)es1ta2H(s2)es2ta3H(s3)es3t
所 以 最 终 的 响 应 是 y ( t ) = a 1 H ( s 1 ) e s 1 t + a 2 H ( s 2 ) e s 2 t + a 3 H ( s 3 ) e s 3 t 所以最终的响应是y(t)=a_{1}H(s_{1})e^{s_{1}t}+a_{2}H(s_{2})e^{s_{2}t}+a_{3}H(s_{3})e^{s_{3}t} y(t)=a1H(s1)es1t+a2H(s2)es2t+a3H(s3)es3t

2.连续周期信号的傅里叶级数的表示
x ( t ) = ∑ k = − ∞ + ∞ a k e j k ( 2 π / T ) t x(t)=\sum_{k=-\infty}^{+\infty}a_{k}e^{jk(2\pi/T)t} x(t)=k=+akejk(2π/T)t
a k = 1 / T ∫ T x ( t ) e − j k ( 2 π / T ) t d t a_{k}=1/T\int_{T}x(t)e^{-jk(2\pi/T)t}dt ak=1/TTx(t)ejk(2π/T)tdt

3.离散周期信号的级数表示
离 散 周 期 信 号 形 如 x [ n ] = x [ n + N ] 它 的 周 期 为 N , 基 波 频 率 是 2 π / N 离散周期信号形如x[n]=x[n+N]\\它的周期为N,基波频率是2\pi/N x[n]=x[n+N]N2π/N
我 们 希 望 用 频 率 是 2 π / N 的 整 数 倍 的 离 散 的 复 指 数 信 号 的 线 性 组 合 来 表 示 它 。 x [ n ] = ∑ k = < N > a k e j k ( 2 π / N ) n ( 这 个 希 望 为 什 么 是 合 理 的 ? ) 我们希望用频率是2\pi/N的整数倍的离散的复指数信号的线性组合来表示它。\\x[n]=\sum_{k=<N>}a_{k}e^{jk(2\pi/N)n}(这个希望为什么是合理的?) 2π/N线x[n]=k=<N>akejk(2π/N)n
下面解释为什么这个希望是合理的。
因 为 x [ n ] = x [ n + N ] 所 以 可 以 列 出 N 个 线 性 方 程 组 来 , 确 定 N 个 未 知 数 a k 因为x[n]=x[n+N]\\所以可以列出N个线性方程组来,确定N个未知数a_{k} x[n]=x[n+N]N线Nak
a k = 1 / N ∑ n = < N > x [ n ] e − j k ( 2 π / N ) n a_{k}=1/N\sum_{n=<N>}x[n]e^{-jk(2\pi/N)n} ak=1/Nn=<N>x[n]ejk(2π/N)n

3.卷积和相乘
一个域的相乘就是另一个域的卷积。
y ( t ) = x ( t ) ∗ h ( t ) y(t)=x(t)*h(t) y(t)=x(t)h(t)
x ( t ) = ∑ a k e j w t , h ( t ) = ∑ b k e j w t , y ( t ) = ∑ c k e j w t x(t)=\sum a_{k}e^{jwt}, h(t)=\sum b_{k}e^{jwt}, \\y(t)=\sum c_{k}e^{jwt} x(t)=akejwt,h(t)=bkejwt,y(t)=ckejwt
那 么 , c n = ∑ k = − ∞ ∞ a k b n − k 那么,c_{n}=\sum_{k=-\infty}^{\infty}a_{k}b_{n-k} cn=k=akbnk
证明这个,可以用有限项相乘,合并同类项,可以观察系数的规律

第四章 连续信号的傅里叶变换

1.非周期信号的傅里叶变换

把上一章的级数公式变一下
x ( t ) = ∑ k = − ∞ + ∞ a k e j k ( 2 π / T ) t x(t)=\sum_{k=-\infty}^{+\infty}a_{k}e^{jk(2\pi/T)t} x(t)=k=+akejk(2π/T)t
T a k = ∫ T x ( t ) e − j k ( 2 π / T ) t d t Ta_{k}=\int_{T}x(t)e^{-jk(2\pi/T)t}dt Tak=Tx(t)ejk(2π/T)tdt
令 w = 2 π / T , 如 果 x ( t ) 的 周 期 T 是 无 穷 大 , 那 么 w → 0 令w=2\pi/T,如果x(t)的周期T是无穷大,那么w\rightarrow0 w=2π/Tx(t)Tw0
令 X = T a k , 那 么 a k = X / T = X w / 2 π 令X=Ta_{k},那么a_{k}=X/T=Xw/2\pi X=Takak=X/T=Xw/2π
那 么 x ( t ) = 1 2 π ∑ k = − ∞ ∞ X e j k w t w , 其 中 w → 0 那么x(t)=\frac{1}{2\pi}\sum_{k=-\infty}^{\infty}Xe^{jkwt}w,其中w\rightarrow0 x(t)=2π1k=Xejkwtww0
写 成 积 分 形 式 x ( t ) = 1 2 π ∫ − ∞ ∞ X ( j w ) e j w t d w 写成积分形式x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(jw)e^{jwt}dw x(t)=2π1X(jw)ejwtdw
X ( j w ) = ∫ − ∞ ∞ x ( t ) e − j w t d t X(jw)=\int_{-\infty}^{\infty}x(t)e^{-jwt}dt X(jw)=x(t)ejwtdt

2.周期信号的傅里叶变换
和离散的形式一样,周期信号也可以表示成基波频率倍数的一系列信号的线性组合
想象一个信号 e j w 0 t e^{jw_{0}t} ejw0t
它 对 应 的 频 谱 应 该 是 w = w 0 的 一 个 冲 击 , 这 个 冲 击 就 是 X ( j w ) = 2 π δ ( w − w 0 ) 它对应的频谱应该是w=w_{0}的一个冲击,这个冲击就是X(jw)=2\pi\delta(w-w_{0}) w=w0X(jw)=2πδ(ww0)

所以
x ( t ) = ∑ k = − ∞ ∞ a k e j w 0 t x(t)=\sum_{k=-\infty}^{\infty}a_{k}e^{jw_{0}t} x(t)=k=akejw0t
T a k = X ( j w ) Ta_{k}=X(jw) Tak=X(jw)
X ( j w ) = ∑ k = − ∞ ∞ 2 π a k δ ( w − k w 0 ) X(jw)=\sum_{k=-\infty}^{\infty}2\pi a_{k}\delta(w-kw_{0}) X(jw)=k=2πakδ(wkw0)

一些思考,不一定对

1. s i n w t 和 c o s w t 都 是 频 率 为 w 的 信 号 , 它 们 相 位 差 了 π / 2 , 因 此 用 复 指 数 信 号 e j w t 可 以 完 全 地 表 示 出 来 。 所 以 单 纯 分 解 c o s θ 在 频 率 域 上 是 Y 轴 对 称 的 两 个 冲 击 , 是 因 为 要 通 过 共 轭 性 把 虚 部 抵 消 掉 1.sinwt和coswt都是频率为w的信号,它们相位差了\pi/2,\\因此用复指数信号e^{jwt}可以完全地表示出来。\\所以单纯分解cos\theta在频率域上是Y轴对称的两个冲击,是因为要通过共轭性把虚部抵消掉 1.sinwtcoswtwπ/2,ejwtcosθY

2.频移性质的理解
e j w t x ( t ) → X ( j ( w − w 0 ) ) e^{jwt}x(t)\rightarrow X(j(w-w_{0})) ejwtx(t)X(j(ww0))
可以理解这在时域上旋转变快了,所以频率向右移了

3.时移性质的理解
x ( t − t 0 ) → e − j w t 0 X ( j ( w ) ) x(t-t_{0})\rightarrow e^{-jwt_{0}}X(j(w)) x(tt0)ejwt0X(j(w))
本来从与频移对称性上可以理解 ,但更直观的理解是,波的相位变化了,但是频率没变,所以在右侧,频率的模乘以了一个单位复数,而频率的相位变化为wt0

4.时间与频率尺度变换的理解
x ( a t ) = 1 ∣ a ∣ X ( j w a ) x(at)=\frac{1}{|a|}X(\frac{jw}{a}) x(at)=a1X(ajw)
时间轴上缩短了x(t)的形状,说明频率变高了,那么在频域上会被拉伸

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值