《线性代数应该这样学》读书笔记

该博客记录了线性代数中向量空间、线性映射、本征值与本征向量等知识。介绍了向量空间的性质、子空间和直和,阐述线性映射的运算、矩阵表示及可逆条件,还探讨了内积空间上算子的相关定理,如谱定理、极分解与奇异值分解等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

每次看完书一定要记得写笔记下来,不然就忘了。这里只纪录看书时觉得不直观的地方和我自己的理解

第1章 向量空间

向量空间
  1. 带有加法和标量乘法的集合,具有6性质
    1.交换 2.结合 3.加法单位元 4.乘法单位元 5.加法逆 6.分配

2.多项式也是一个向量空间,这个向量空间是无穷维的,每个多项式只是其中的一个点

子空间

封闭性,包含加法单位元0

直和

不相交的子空间相加

第2章 有限维向量空间

张成与线性无关

1.线性无关组张成V 称之为V的基。有限维向量空间中。每个线性无关向量组都可以扩充成一个基。(这个证明包含了一个隐含的假设:每个有限维向量空间V都可以找到一组张成它的向量,为什么?)
2.有限维向量空间基的长度称为向量空间的维数dim,多项式的维数是
d i m P m ( F ) = m + 1 dimP_m(F)=m+1 dimPm(F)=m+1

第3章 线性映射

3.1.V到W的映射
T : V → W 记 作 L ( V , W ) T:V\rightarrow W 记作 \mathcal{L}(V,W) T:VWL(V,W)
加 性 T ( u + v ) = T ( u ) + T ( v ) 加性 T(u+v)= T(u) + T(v) T(u+v=T(u)+T(v) 齐 性 T ( a v ) = a T v 齐性 T(av)= aTv T(av=aTv
微分映射
T ∈ L ( P ( R ) , P ( R ) ) T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R})) TL(P(R),P(R)) T P = P ′ T\mathcal{P}=\mathcal{P}' TP=P
积分映射
T ∈ L ( P ( R ) , R ) ) T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})) TL(P(R),R)) T P = ∫ 0 1 P ( x ) d x T\mathcal{P}=\int_0^1\mathcal{P}(x)dx TP=01P(x)dx

.线性映射本身构成向量空间
S , T ∈ L ( v , w ) S,T \in \mathcal{L}(v, w) S,TL(v,w) 定 义 ( S + T ) v = S v + T v 定义 (S+T)v=Sv+Tv (S+T)v=Sv+Tv a T v = ( a T ) v aTv=(aT)v aTv=(aT)v

3.2.零空间
n u l l T = { v ∈ V , T v = 0 } nullT= \{v \in V, Tv = 0\} nullT={vV,Tv=0}
它是v的子空间,它有加法单位元,且运算封闭。
映射T是单的(injective)表明映射是一对一的,映射不会被压缩,即零空间只有0。

值域 r a n g e T = { T v : v ∈ V } rangeT=\{Tv:v\in V\} rangeT={Tv:vV}
映射T是满的(surjective),可得
r a n g T = W rangT=W rangT=W

3.3线性映射的矩阵
. . . . . v k . . . \begin{array}{lcl} \quad ..... \quad v_{k} \quad...\\ \end{array} .....vk...

w 1 . . . . w m [ . . . a 1 , k . . . . . . . . . . . . . . . . . . . . a m , k . . . ] \begin{array}{lcl} \begin{array}{lcl} w_1\\ ....\\ w_m\\ \end{array} \left[ \begin{array}{lcl} ... \quad a_{1,k} \quad...\\ ... \quad ........ \quad...\\ ... \quad a_{m,k} \quad... \end{array} \right] \end {array} w1....wm...a1k....................amk...
T v k = a 1 , k w 1 + a 2 , k w 2 + . . . . + a m , k w m Tv_{k}=a_{1,k}w_1+a_{2,k}w_2+....+a_{m,k}w_m Tvk=a1,kw1+a2,kw2+....+am,kwm
把源空间的基转到目标空间后,作为矩阵的列得到的矩阵记为M(T, v, w)
比如:
T ( x , y ) = ( x + 3 y , 2 x + 5 y , 7 x + 9 y ) T(x,y)=(x+3y, 2x+5y, 7x+9y) T(x,y)=(x+3y,2x+5y,7x+9y)
那 么 T ( 1 , 0 ) = ( 1 , 2 , 7 ) , T ( 0 , 1 ) = ( 3 , 5 , 9 ) 那么T(1,0) = (1,2,7), T(0,1) = (3,5,9) T(1,0)=(1,2,7),T(0,1)=(3,5,9),因此T关于标准基的矩阵就是
[ 1 3 2 5 7 9 ] \left[ \begin{array}{lcl} 1 \quad3\\ 2 \quad5\\ 7 \quad9 \end{array} \right] 132579

矩阵本身也可以看作是向量空间的一个元素
定义加法和数乘
M ( T + S ) = M ( T ) + M ( S ) M(T+S)=M(T)+M(S) M(T+S)=M(T)+M(S) M ( c T ) = c M ( T ) M(cT)=cM(T) M(cT)=cM(T)
下面定义矩阵的乘法,要满足复合映射的规律,即
T = L ( U , V ) , S = L ( V , W ) 定 义 S T ∈ L ( U , W ) 为 ( S T ) v = S ( T v ) , v ∈ U T=\mathcal{L}(U,V), S=\mathcal{L}(V,W)\\ 定义ST\in \mathcal{L}(U,W)为 \\(ST)v=S(Tv), v\in U T=L(U,V),S=L(V,W)STL(U,W)(ST)v=S(Tv),vU
所 以 , 按 照 这 个 定 义 要 是 能 有 M ( T S ) = M ( T ) M ( S ) 就 最 好 了 所以,按照这个定义要是能有M(TS)=M(T)M(S)就最好了 M(TS)=M(T)M(S)
按照上述的理想状态,矩阵乘法的每个元素的运算规则也就确定了,书中这里推导了矩阵乘法为什么是这样的。

下面是向量的矩阵, 和映射的矩阵不同
设 ( v 1 , . . . . , v n ) 是 V 的 基 , 那 么 v = b 1 v 1 + . . . + b n v n 记 v 的 矩 阵 M ( v ) = [ b 1 . . . b n ] 设(v_1,....,v_n)是V的基,那么v=b_1v_1+...+b_nv_n \\ 记v的矩阵 M(v)= \left[ \begin{array}{lcl} b_1\\ ...\\ b_n \end{array} \right] (v1,....,vn)Vv=b1v1+...+bnvnvM(v)=b1...bn
在 这 样 的 定 义 下 , 设 T ∈ L ( V , W ) , 那 么 M ( T v ) = M ( T ) M ( v ) 其 中 M ( T v ) 和 M ( v ) 是 向 量 的 矩 阵 , M ( T ) 是 变 换 的 矩 阵 在这样的定义下,设T\in\mathcal{L}(V,W) ,那么M(Tv)=M(T)M(v) \\ 其中M(Tv)和M(v)是向量的矩阵,M(T)是变换的矩阵 TL(V,W)M(Tv)=M(T)M(v)M(Tv)M(v)M(T)

3.4 线性映射是可逆的当且仅当它又是单的又是满的
这两个空间是同构的 isomorphic
两 个 维 数 相 等 的 向 量 空 间 一 定 同 构 所 以 每 个 有 限 维 向 量 空 间 都 同 构 于 F n 两个维数相等的向量空间一定同构\\ 所以每个有限维向量空间都同构于F^n Fn
高能
设 ( v 1 , . . . . , v n ) 是 V 的 基 , 设 ( w 1 , . . . . , w n ) 是 W 的 基 , 那 么 M 是 L ( v , w ) 和 M a t ( m , n , F ) 之 间 的 可 逆 线 性 映 射 , 即 M ( L ) = M a t ( m , n , F ) 设(v_1,....,v_n)是V的基, 设(w_1,....,w_n)是W的基,\\ 那么M是\mathcal{L}(v,w) 和Mat(m,n,F)之间的可逆线性映射,即\\ M(\mathcal{L})=Mat(m,n,F) (v1,....,vn)V,(w1,....,wn)WML(v,w)Mat(m,n,F)线M(L)=Mat(m,n,F) 这 里 说 明 一 个 线 性 映 射 , 一 定 对 应 一 个 矩 阵 , 反 之 亦 然 , 这 要 从 与 F n 同 构 的 方 面 理 解 因 此 d i m ( L ( v , w ) ) = d i m ( V ) d i m ( W ) 这里说明一个线性映射,一定对应一个矩阵,反之 亦然,这要从与F^n同构的方面理解\\ 因此 dim(\mathcal{L(v,w)})=dim(V)dim(W) 线Fndim(L(v,w))=dim(V)dim(W)因为矩阵的维数是mn

向量空间到自身的映射称为算子
T : V → V 记 为 L ( V ) 有 限 维 空 间 的 算 子 单 的 → 满 的 → 可 逆 的 T:V\rightarrow V 记为\mathcal{L}(V) \\ 有限维空间的算子 单的\rightarrow 满的 \rightarrow 可逆的 T:VVL(V)

第5章 本征值与本征向量

5.1不变子空间
T ∈ L ( V ) , U 是 V 的 子 空 间 , 若 ∀ u ∈ U , 都 有 T u ∈ U , 则 U 在 T 下 是 不 变 的 T \in \mathcal{L}(V), U是V的子空间,若\forall u \in U,\\ 都有Tu \in U,则U在T下是不变的 TL(V)UVuUTuUUT

特征值:
T ∈ L ( V ) 和 标 量 λ ∈ F , 如 果 有 非 零 向 量 u ∈ V 使 得 T u = λ u , 则 λ 为 T 的 特 征 值 e i g e n v a l u e T \in \mathcal{L}(V)和标量 \lambda \in \textbf{F}, 如果有非零向量u \in V 使得 \\Tu=\lambda u,则\lambda 为T的特征值 eigenvalue TL(V)λF,uV使Tu=λuλTeigenvalue
特征向量不能是0向量,特征值可以是0

定理5.6:不同特征值对应的特征向量线性无关
书上的证明用的是反证法,假设特征值不同向量相关,那么把相关的向量v投影到最大无关组中(就是把该向量用无关组表出),再对无关组作用T,再减去Tv。
如何理解呢。我的理解就是一个线性算子对一条线的缩放作用不能有两种形式。假如特征值不同的特征向量线性相关,那么其中一个向量一定可以被其它向量表出,那么这个向量的特征值也适用的其它向量,因此其它向量在这个算子下,有两种拉伸。是矛盾的。

定理5.10 有限维非零复向量空间上的每个算子都有本征值
怎么理解?书上的证明是用T的幂构造出n+1个向量必线性相关,利用代数学基本定理得出。
我总感觉这个证明很像巴拿赫不动点定理的证明,只是它不是压缩映射,而是值域与定义域相等的映射,所以它的结果也没有那么强,没有得到一个不动点,而是得到了一个不动线。在三维空间中的转动得到的就是转轴,二维上的转动就是垂直到平面的虚轴

线性算子的矩阵,
算 子 T ∈ L ( V ) , 且 ( v 1 , . . . , v n ) 是 是 基 有 T v k = a 1 , k v 1 + . . . + a n , k v n 则 T 关 于 ( v 1 , . . . , v n ) 的 矩 阵 是 算子 T \in \mathcal{L}(V),且(v_1,...,v_n)是是基 \\ 有Tv_k=a_{1,k}v_1+...+a_{n,k}v_n \\ 则T关于(v_1,...,v_n)的矩阵是 TL(V)(v1,...,vn)Tvk=a1,kv1+...+an,kvnT(v1,...,vn) [ a 1 , 1 . . . a 1 , n . . . . . . . . . . . . . . a n , 1 . . . a n , n ] \begin{array}{lcl} \left[ \begin{array}{lcl} a_{1,1} \quad...\quad a_{1,n}\\ ... \quad ........ \quad...\\ a_{n,1} \quad...\quad a_{n,n}\\ \end{array} \right] \end {array} a11...a1n..............an1...ann
这个矩阵是对T的描述。注意不要和局部坐标到世界坐标的变换矩阵相混淆,因此坐标变换矩阵并不是描述算子的作用方式,它只是描述变换前后同一个算子的不同表示,算子还是那个算子,因为对空间中的点来说,变换前后那些点并没有发生任何变化。然而这些矩阵都遵从相同的运算法则,可以混合在一起,所以如果我们以相对的观点来看待这个问题的话,坐标系的变化也可以看成坐标不变,而是空间中的点相对变化。因此这么看来又是统一的。

定理 5.13
设 V 是 复 向 量 空 间 , T ∈ L ( V ) , 则 T 关 于 V 某 个 基 有 上 三 角 矩 阵 设V是复向量空间, T\in \mathcal{L}(V), 则T关于V某个基有上三角矩阵 VTL(V)TV
证 : 由 5.10 , 一 定 有 特 征 值 , 将 其 作 为 第 一 列 , 然 后 不 断 在 子 空 间 上 扩 充 基 , 可 以 保 证 证:由5.10,一定有特征值,将其作为第一列,然后不断在子空间上扩充基,可以保证 5.10 T v k ∈ s p a n ( v 1 , . . . , v k ) , k = 1 , . . . , n 说 明 每 个 子 空 间 在 T 下 都 是 不 变 的 Tv_k\in span(v_1, ...,v_k), k = 1, ...,n \\说明每个子空间在T下都是不变的 Tvkspan(v1,...,vk),k=1,...,nT

定理5.20
若 T ∈ L ( V ) , 有 d i m ( V ) 个 互 不 相 同 的 本 征 值 , 则 T 关 于 V 的 某 个 基 有 对 角 矩 阵 若T\in \mathcal{L}(V), 有dim(V)个互不相同的本征值,则T关于V的某个基有对角矩阵 TL(V)dim(V)TV
很好理解,因为不同的特征值对应的特征向量是线性无关的,根据定理5.13,那个上三角矩阵可以简化为对角矩阵

命题5.21
T ∈ L ( V ) 的 互 不 相 同 的 特 征 值 构 成 了 V 的 一 组 基 并 且 n u l l ( T − λ j I ) 构 成 了 V 的 各 个 不 变 的 子 空 间 T\in \mathcal{L}(V)的互不相同的特征值构成了V的一组基 \\ 并且null(T-\lambda _j I)构成了V的各个不变的子空间 TL(V)Vnull(TλjI)V

5.5 实向量空间的不变子空间
定理5.24 在有限维非零实向量空间中,每个算子都有1维或2维的不变子空间
定理5.26 在奇数维实向量空间上,每个算子都有本征值
如何理解:
想 象 R 2 上 的 旋 转 , 转 轴 是 i , 不 在 R 2 上 , 而 R 3 一 定 会 有 有 转 轴 在 R 3 上 , 所 以 一 定 有 特 征 值 想象\mathbb{R}^2上的旋转,转轴是i,不在\mathbb{R}^2上,而\mathbb{R}^3一定会有有转轴在\mathbb{R}^3上,所以一定有特征值 R2iR2R3R3

第6章 内积空间

内积

V 上 的 内 积 是 一 个 函 数 , 它 把 V 中 元 素 每 个 有 序 对 ( u , v ) 都 映 射 成 一 个 数 < u , v > ∈ F 只 要 这 个 映 射 满 足 5 个 性 质 1. 正 性 2. 定 性 ( 0 只 有 0 向 量 能 映 射 ) 3. 第 一 个 位 置 加 性 , 4. 第 一 个 齐 性 5. 共 轭 对 称 性 < u , v > = < v , u > ‾ 那 么 都 叫 内 积 。 V上的内积是一个函数,它把V中元素每个有序对(u,v)都映射成一个数 \\ <u,v>\in \textbf{F} \\ 只要这个映射满足5个性质1.正性 2.定性(0只有0向量能映射) \\ 3. 第一个位置加性,4.第一个齐性\\5.共轭对称性<u,v>=\overline{<v,u>}那么都叫内积。 VV(u,v)<u,v>F51.2.(00)3.4.5.<u,v>=<v,u> 所 以 可 以 定 义 一 种 < ( w 1 , . . . , w n ) , ( z 1 , . . . , z n ) > = w 1 z 1 ‾ + . . . + w n z n ‾ 这 个 叫 欧 几 里 得 内 积 所以可以定义一种<(w_1,...,w_n),(z_1,...,z_n)>=w_1 \overline{z_1}+...+w_n \overline{z_n} \\这个叫欧几里得内积 <(w1,...,wn),(z1,...,zn)>=w1z1+...+wnzn
这里为什么是共轭呢,是因为要满足范数是实数的要求,并且把范数平方看作是z和自身的内积
∣ ∣ z ∣ ∣ 2 = < z , z > = z z ‾ ||z||^2=<z,z>=z \overline{z} z2=<z,z>=zz
因此有了共轭的需要,仅仅是为了能给向量比大小。

正交

< u , v > = 0 则 称 u 和 v 正 交 <u,v>=0 则称u和v正交 <u,v>=0uv
6.6 柯西-施瓦茨不等式
∣ < u , v > ∣ ≤ ∣ ∣ u ∣ ∣ ⋅ ∣ ∣ v ∣ ∣ |<u,v>|\le ||u|| \cdot ||v|| <u,v>uv
6.7 三角不等式
∣ ∣ u + v ∣ ∣ ≤ ∣ ∣ u ∣ ∣ + ∣ ∣ v ∣ ∣ ||u+v||\le ||u|| + ||v|| u+vu+v
6.7 平行四边形等式
∣ ∣ u + v ∣ ∣ 2 + ∣ ∣ u − v ∣ ∣ 2 = 2 ( ∣ ∣ u ∣ ∣ 2 + ∣ ∣ v ∣ ∣ 2 ) ||u+v||^2+ ||u-v||^2 = 2(||u||^2+||v||^2) u+v2+uv2=2(u2+v2)

规范正交基

定理6.24:每个有限维内积空间都有规范正交基
证明:取V的一个基,对它应用格拉姆-施密特正交过程。就得到

定理6.28
设 V 是 复 向 量 空 间 , 并 且 T ∈ L ( V ) , 则 T 关 于 V 的 某 个 规 范 正 交 基 具 有 上 三 角 矩 阵 设V是复向量空间,并且T\in \mathcal{L}(V), 则T关于V的某个规范正交基具有上三角矩阵 VTL(V),TV
这其实是5.13的推广,把5.13的基正交化之后,就得到该定理

正交投影与极小化

U 的 正 交 补 U ⊥ U ⊥ = { v ∈ V : < v , u > = 0 , u ∈ U } U的正交补 U^\perp \\ U^\perp= \{ v\in V:<v,u>=0, u\in U\} UUU={vV:<v,u>=0,uU}
是由V中与U的每个向量都正交的那些向量的集合。
所 以 V 可 以 写 成 U 和 U ⊥ 的 直 和 所以V可以写成U和U^\perp的直和 VUU

线性泛函与伴随

V 上 的 线 性 泛 函 是 V 到 F 的 线 性 映 射 , 将 向 量 空 间 映 射 到 一 个 数 V上的线性泛函是V到F的线性映射,将向量空间映射到一个数 V线VF线
定理6.45:
设 φ 是 V 上 的 线 性 泛 函 , 则 存 在 唯 一 一 个 向 量 v ∈ V , 使 得 φ ( u ) = < u , v > , u ∈ V 设\varphi是V上的线性泛函,则存在唯一一个向量v\in V,\\ 使得\varphi (u)=<u,v>, u \in V φV线vV,使φ(u)=<u,v>,uV
这个定理很像信号与系统中的线性时不变系统的研究方法,找到每个信号的特征信号分解,然后把分解代入系统 ,计算出这些特征信号的响应,那么将这些响应按分解的系数相加,便得到原始信号的响应。
这个定理的证明也是如此:
找 到 V 中 的 规 范 正 交 基 , 代 入 线 性 系 统 φ 中 , 得 到 响 应 , 这 个 响 应 就 是 ( φ ( e 1 ) , . . . , φ ( e n ) ) 然 后 按 分 解 的 系 数 相 加 , φ ( u ) = < ( u e 1 , . . . u e n ) , ( φ ( e 1 ) , . . . , φ ( e n ) ) > = < u , ( φ ( e 1 ) ‾ e 1 , . . . , φ ( e n ) ‾ e n ) > 所 以 v = ( φ ( e 1 ) ‾ e 1 , . . . , φ ( e n ) ‾ e n ) 找到V中的规范正交基,代入线性系统\varphi 中,得到响应,\\ 这个响应就是 (\varphi(e_1),...,\varphi(e_n)) \\ 然后按分解的系数相加, \\ \varphi(u) = <(ue_1,...ue_n),(\varphi(e_1),...,\varphi(e_n))> \\ = <\textbf{u},(\overline{\varphi(e_1)}e_1,...,\overline{\varphi(e_n)}e_n)> \\ 所以 v=(\overline{\varphi(e_1)}e_1,...,\overline{\varphi(e_n)}e_n) V线φ(φ(e1),...,φ(en))φ(u)=<(ue1,...uen),(φ(e1),...,φ(en))>=<u,(φ(e1)e1,...,φ(en)en)>v=(φ(e1)e1,...,φ(en)en)
因 此 这 个 唯 一 的 v 就 描 述 了 线 性 系 统 的 性 质 因此这个唯一的v就描述了线性系统的性质 v线
伴随的定义:
每次看到这里,我都会发出灵魂三问,我是谁,我在哪?这个定义太他妈绕了。我不确定我是否真正理解他的动机,所以把原文抄下来。
设 T ∈ L ( V ) 。 T 的 伴 随 , 记 为 T ∗ , 是 如 下 定 义 的 从 W 到 V 的 函 数 。 给 定 w ∈ W 。 考 虑 V 上 将 v ∈ V 映 成 < T v , w > 的 线 性 泛 函 。 取 T ∗ w 是 V 中 唯 一 的 那 个 具 有 下 面 性 质 的 向 量 : 上 述 线 性 泛 函 是 通 过 与 T ∗ w 内 积 所 给 出 的 ( 上 面 保 证 的 唯 一 性 ) 。 也 就 是 说 T ∗ 是 V 中 唯 一 一 个 满 足 下 面 条 件 的 向 量 : < T v , w > = < v , T ∗ w > , v ∈ V 设T\in \mathcal{L}(V)。T的伴随,记为T^*,是如下定义的从W到V的函数。\\ 给定w\in W。考虑V上将v\in V映成<Tv,w>的线性泛函。\\ 取T^*w是V中唯一的那个具有下面性质的向量:上述线性泛函是通过与T ^*w内积所给出的(上面保证的唯一性)。 \\ 也就是说T^*是V中唯一一个满足下面条件的向量: \\ <Tv,w>=<v, T^*w>, v \in V TL(V)TTWVwWVvV<Tv,w>线TwV线Tw()TV:<Tv,w>=<v,Tw>,vV
伴随是一一对应的,有一个T就对应了T的一个伴随。它和它的伴随将两个空间中的向量进行映射,以保证它们的内积是相等的。

命题6.47
如 果 M 是 T 关 于 规 范 正 交 基 的 矩 阵 , 那 么 它 的 伴 随 就 是 它 的 共 轭 转 置 如果M是T关于规范正交基的矩阵,那么它的伴随就是它的共轭转置 MT

第7章 内积空间上的算子

7.1自伴算子与正规算子

自 伴 算 子 就 是 T = T ∗ 自伴算子就是T=T^* T=T
写出它的矩阵就是实对称矩阵。打个比方,它就像是复数域中的实数一样。因此它有很多特征类似于实数
命题7.1:自伴算子本征值都是实的。
推 论 7.3 设 V 是 复 内 积 空 间 T ∈ L ( V ) , 则 T 是 自 伴 的 当 且 仅 当 每 个 v ∈ V 都 有 < T v , v > ∈ R 如 何 理 解 , 因 为 T 是 实 的 , 因 此 T v 不 改 变 v 的 共 轭 性 , 所 以 在 共 轭 性 上 < T v , v > 相 当 于 内 积 , 可 以 看 作 v ‾ T T v 的 二 次 型 推论7.3 设V是复内积空间T \in L(V),则T是自伴的当且仅当每个v \in V都有 \\ <Tv,v>\in R \\如何理解,因为T是实的,因此Tv不改变v的共轭性,所以在共轭性上\\<Tv,v>相当于内积,可以看作\overline{v}^TTv的二次型 7.3VTL(V)TvVTv,vRTTvvTv,vvTTv
因 此 为 若 对 所 有 v 都 有 < T v , v > = 0 , 那 么 T = 0 因此为若对所有v都有<Tv,v>=0,那么T=0 vTv,v=0T=0

正规算子
若 T T ∗ = T ∗ T , 那 么 称 为 T 是 正 规 的 必 有 ∣ ∣ T v ∣ ∣ = ∣ ∣ T ∗ v ∣ ∣ 若TT^*=T^*T,那么称为T是正规的 \\ 必有||Tv||=||T^*v|| TT=TTTTv=Tv第一次看这里的时候有点懵逼,为什么突然给一个正规算子的定义,后来才知道是为了给后面的谱定理作铺垫。人们总想把矩阵对角化,那么什么样的算子可以对角化呢,只有缩放矩阵是对角化的,那么这样的算子不多,更加通用一点的就是正规算子了。正规算子将一个向量在原空间和它的伴随在对偶空间中作变换,长度不变,这说明了什么?说明了正规算子正好由一个旋转矩阵和对角线缩放矩阵组成啊。正规算子和它的伴随中的旋转成分,正好是在对偶空间中镜像的,它不改变向量的长度,而对角缩放矩阵是正好是对标准正交基上的缩放,在对偶空间中它对共轭向量长度的改变是一致的。设想如果不是对角矩阵,那么缩放不在标准正交基,那么共轭量的改变是不是一致的(想象复数,如果不是拉伸两个垂直的坐标轴,那么两个共轭复数的模变化将会不一致)

因此,下面这两条推论就自然而然了
推论7.7:
若 v 是 T 相 应 于 特 征 值 λ 的 特 征 向 量 , 那 么 v 也 是 T ∗ 相 应 于 特 征 值 λ ‾ 的 特 征 向 量 。 若v是T相应于特征值\lambda的特征向量,\\ 那么v也是T^*相应于特征值\overline{\lambda} 的特征向量。 vTλvTλ

推论7.8:
若 T 是 正 规 的 , 那 么 T 相 应 于 不 同 本 征 值 的 本 征 向 量 是 正 交 的 若T是正规的,那么T相应于不同本征值的本征向量是正交的 TT

7.2 谱定理

复谱定理
设 V 是 复 内 积 空 间 , 且 T ∈ L ( V ) , 则 V 有 一 个 由 T 的 本 征 向 量 组 成 的 规 范 正 交 基 当 且 仅 当 T 是 正 规 的 设V是复内积空间,且T\in \mathcal{L}(V),\\则V有一个由T的本征向量组成的规范正交基当且仅当T是正规的 VTL(V)VTT
这个定理说明了在复内积空间中,正规算子关于某正交基有对角矩阵,而这个正交基正好是算子的特征向量。

引理 7.12
设 T ∈ L ( V ) 是 自 伴 的 , 则 T 有 本 征 值 设T\in L(V)是自伴的,则T有本征值 TL(V)T
这个定理是定理5.10的扩展, 5.10讲的是在复向量空间中任何算子都有本征值,7.12这个定理实用于任何向量空间,但把它条件加强了,算子必须自伴。所以这里需要证明的只有实内积空间。5.10的证明在实内积空间不实用,为什么呢?比如旋转,在实内积空间上没有特征值,它的特征值在虚平面上。但如果想要得到实数域的特征值怎么办,那么就需要有类似实数一样的算子,那就是自伴算子。因此这个定理也很好理解。下面这个实谱定理也很好明白了

实谱定理
设 V 是 实 内 积 空 间 , 且 T ∈ L ( V ) , 则 V 有 一 个 由 T 的 本 征 向 量 组 成 的 规 范 正 交 基 当 且 仅 当 T 是 自 伴 的 设V是实内积空间,且T\in \mathcal{L}(V),\\则V有一个由T的本征向量组成的规范正交基当且仅当T是自伴的 VTL(V)VTT

7.3 实内积空间上的正规算子

在处理实内积空间上的算子时,需要算子自伴才能对角化,这样的算子不普适。因此我们也要找一个在实内积空间上类似于复空间上正规的算子。
实内积空间上 的正规算子的矩阵接近于对角矩阵,最多是2x2的分块对角矩阵
[ a − b b a ] − b > 0 \begin{array}{lcl} \left[ \begin{array}{lcl} a \quad -b\\ b \quad \quad a\\ \end{array} \right] \end {array} -b> 0 [abba]b>0

7.4 正算子

若 T 是 ∗ ∗ 自 伴 ∗ ∗ 的 , ⟨ T v , v ⟩ ⩾ 0 则 称 T 为 正 的 若T是**自伴**的,\langle Tv,v \rangle \geqslant 0 \\则称T为正的 TTv,v0T
这里有一个隐含的条件,就是<Tv,v>是实数,因为它可以和实数比大小。因此T必须是自伴的,它相当于一个正整数的作用。
因此,T有正的且自伴的平方根(且是唯一)
有 算 子 S ∈ L ( V ) 使 得 T = S ∗ S 有算子 S\in \mathcal{L}(V)使得T=S^*S SL(V)使T=SS

7.5 等距同构

∣ ∣ S v ∣ ∣ = ∣ ∣ v ∣ ∣ , 称 S 为 等 距 同 构 ||Sv||=||v||,称S为等距同构 Sv=vS
S 为 等 距 同 构 , 那 么 S ∗ S = I S为等距同构,那么S^*S=I SSS=I
等距同构是保范数的,又被称为酉(unitary)算子。可以理解为旋转
定理7.37:
V 是 复 内 积 空 间 , S ∈ L V , 则 S 是 等 距 同 构 当 且 仅 当 S 的 本 征 值 的 绝 对 值 都 是 1 , 而 且 V 有 一 个 由 S 的 本 征 值 向 量 组 成 的 规 范 正 交 基 V是复内积空间,S\in \mathcal{L}{V},则S是等距同构当且仅当S的本征值的绝对值都是1,\\而且V有一个由S的本征值向量组成的规范正交基 VSLVSS1VS
这是点由谱定理保证了
定理7.38:
V 是 实 内 积 空 间 , 则 S 是 等 距 同 构 当 且 仅 当 V 有 一 个 规 范 正 交 基 使 得 S 关 于 此 基 有 分 块 对 角 矩 阵 每 个 分 块 要 么 是 1 或 − 1 , 要 么 是 2 × 2 的 旋 转 矩 阵 V是实内积空间,则S是等距同构当且仅当V有一个规范正交基使得S关于此基有分块对角矩阵\\ 每个分块要么是1或-1,要么是2\times 2的旋转矩阵 VSV使S112×2 [ c o s θ − s i n θ s i n θ c o s θ ] \begin{array}{lcl} \left[ \begin{array}{lcl} cos\theta \quad -sin\theta \\ sin\theta \quad \quad cos\theta \\ \end{array} \right] \end {array} [cosθsinθsinθcosθ]
这个旋转矩阵的行列式等于1。

7.6 极分解与奇异值分解

7.41 极分解
若 T ∈ L ( V ) , 则 有 一 个 等 距 同 构 S ∈ L ( V ) 使 得 T = S T ∗ T 若T\in \mathcal{L}(V),则有一个等距同构S\in \mathcal{L}(V)使得T=S\sqrt{T^*T} TL(V)SL(V)使T=STT
其中S是旋转,剩下的部分是缩放。
T ∗ T 是 自 伴 的 , 可 以 把 这 个 看 着 是 算 子 和 自 己 进 行 内 积 , 所 以 它 是 正 的 可 以 开 平 方 , 开 完 平 方 后 , 得 到 的 算 子 和 原 算 子 对 向 量 的 拉 伸 作 用 是 一 致 的 其 中 旋 转 部 分 S 和 拉 伸 部 分 T ∗ T 都 可 以 对 角 化 但 是 不 一 定 能 关 于 同 一 个 规 范 正 交 基 , 可 能 需 要 两 组 规 范 正 交 基 T^*T是自伴的,可以把这个看着是算子和自己进行内积,所以它是正的\\可以开平方,开完平方后,得到的算子和原算子对向量的拉伸作用是一致的 \\ 其中旋转部分S和拉伸部分\sqrt{T^*T} 都可以对角化\\ 但是不一定能关于同一个规范正交基,可能需要两组规范正交基 TTSTT

奇异值分解SVD
奇 异 值 定 义 为 T ∗ T 的 特 征 值 重 复 d i m N u l l ( T ∗ T − λ I ) 次 而 T ∗ T 身 是 正 算 子 , 所 以 它 的 特 征 值 都 是 非 负 实 数 奇异值定义为\sqrt{T^*T}的特征值重复 dim Null(\sqrt{T^*T}-\lambda I)次 \\而T^*T身是正算子,所以它的特征值都是非负实数 TT dimNull(TT λI)TT 所以对T的特征值的研究转化为对T的奇异值的研究,变成了非负实数
奇异值分解公式
T v = s 1 ⟨ v , e 1 ⟩ f 1 + . . . + s n ⟨ v , e n ⟩ f n 其 中 e 是 T ∗ T 的 特 征 向 量 , f 是 S 的 特 征 向 量 Tv=s_1\langle v,e_1\rangle f_1 + ...+s_n\langle v,e_n\rangle f_n \\其中e是\sqrt{T^*T}的特征向量, f是S的特征向量 Tv=s1v,e1f1+...+snv,enfneTT fS
写成矩阵形式
M ( T , ( e 1 , . . . , e n ) , ( f 1 , . . . , f n ) ) = [ s 1 0 . . . . 0 s n ] \mathcal{M}(T,(e_1,...,e_n),(f_1,...,f_n))=\\ \begin{array}{lcl} \left[ \begin{array}{lcl} s_1 \quad \quad 0 \\ \quad .. .. \\ 0 \quad \quad s_n \\ \end{array} \right] \end {array} M(T,(e1,...,en),(f1,...,fn))=s10....0sn

第8章 复向量空间上的算子

8.1 广义本征向量

前面章节分析的算子都是比较良好的算子,它们有足够多的本征向量,可以作为T的基。然而在实际应用中,却有很多算子没有足够多的特征值和特征向量。那么这种算子应该如何分解呢。
如果我们从不变子空间的角度出发,把目标空间分解为T的不变子空间。那么在不变子空间里处理问题也就变方便了。前面的正规算子之类的,它们的不变子空间就是特征向量所在的那一条线,就是一维的不变子空间。
设 T ∈ L ( V ) , 且 λ 是 T 的 本 征 值 , 对 于 v ∈ V , 设T\in\mathcal{L}(V), 且\lambda是T的本征值,对于v\in V, TL(V),λTvV,
若 存 在 j , ( T − λ I ) j v = 0 , 则 v 是 T 的 广 义 本 征 向 量 若存在j,(T-\lambda I)^jv=0,则v是T的广义本征向量 j(TλI)jv=0vT广
推论:
设 T ∈ L ( V ) , 且 λ 是 T 的 本 征 值 , 则 T 的 相 应 于 λ 的 广 义 本 征 向 量 之 集 为 设T\in\mathcal{L}(V), 且\lambda是T的本征值,则T的相应于\lambda 的广义本征向量之集为 TL(V),λT,Tλ广
n u l l ( T − λ I ) d i m V null(T-\lambda I)^{dimV} null(TλI)dimV

推论:
设 N ∈ L ( V ) 是 幂 零 的 , 那 么 N d i m V = 0 设N\in\mathcal{L}(V)是幂零的,那么N^{dimV}= 0 NL(V)NdimV=0

8.2 特征多项式

命题8.18:
设 V 是 复 向 量 空 间 , T ∈ L ( V ) , 那 么 T 的 所 有 本 征 值 重 数 和 为 d i m V 设V是复向量空间,T\in\mathcal{L}(V), 那么T的所有本征值重数和为dimV VTL(V),TdimV
特征多项式定义:
( z − λ 1 ) d 1 . . . ( z − λ m ) d m (z-\lambda_{1})^{d_1}...(z-\lambda_m)^{d_m} (zλ1)d1...(zλm)dm
其中d是特征值重数

8.20凯莱-哈密顿定理:
设 V 是 复 向 量 空 间 , T ∈ L ( V ) , 并 设 q 表 示 T 的 特 征 多 项 式 , 那 么 q ( T ) = 0 设V是复向量空间,T\in\mathcal{L}(V),并设q表示T的特征多项式,那么q(T)=0 VTL(V),qTq(T)=0
这个定理,书上是用数字归纳法证的。怎么直观点理解,其实就是要理解
( T − λ I ) d 这 个 算 子 , 它 的 零 空 间 n u l l ( T − λ I ) d (T-\lambda I)^{d}这个算子,它的零空间null(T-\lambda I)^{d} (TλI)dnull(TλI)d
是V的一个d维子空间,这个算子产生的作用是将子空间的数据压缩到0中。因此,如果将所有这样的算子相乘,那么自然就是把所有子空间数据都映射到0中去。自然该算子就是0了。
因此
n u l l ( T − λ I ) d 在 T 下 是 不 变 的 子 空 间 , n u l l P ( T ) 在 T 下 也 是 不 变 的 null(T-\lambda I)^{d}在T下是不变的子空间,nullP(T)在T下也是不变的 null(TλI)dTnullP(T)T
因此定理8.23也好理解:
设 V 是 复 向 量 空 间 , T ∈ L ( V ) , 设 λ 1 , . . . λ m 是 不 同 本 征 值 设V是复向量空间,T\in\mathcal{L}(V), 设\lambda_1,...\lambda_m是不同本征值 VTL(V),λ1,...λm
并 且 U 1 , . . . , U m 分 别 是 相 应 的 广 义 本 征 向 量 子 空 间 , 那 么 下 面 命 题 等 价 并且U_1,...,U_m分别是相应的广义本征向量子空间,那么下面命题等价 U1,...,Um广
1. V = U 1 ⊕ . . . ⊕ U m 1.V=U_1\oplus ...\oplus U_m 1.V=U1...Um
2. 每 个 U j 在 T 下 都 是 不 变 的 2.每个U_j在T下都是不变的 2.UjT
3. ( T − λ j I ) ∣ U j ( 表 示 在 U j 的 不 变 子 空 间 中 ) , 都 是 幂 零 的 3.(T-\lambda _j I)|_{U_j} (表示在U_j的不变子空间中),都是幂零的 3.(TλjI)UjUj

推论8.25:
设 V 是 复 向 量 空 间 , T ∈ L ( V ) , 那 么 V 有 一 个 由 T 的 广 义 本 征 向 量 组 成 的 基 设V是复向量空间,T\in\mathcal{L}(V),那么V有一个由T的广义本征向量组成的基 VTL(V),VT广
这个推论注意和命题5.21相比较,5.21说的是T所有本征值互不相同,那么由T的本征向量可构成V的基,这里放宽了条件,可以有相同的本征值,但是相同的本征值对应的本征向量是一个多维空间,由这个多维空间的基,组合在一起再构成V的基。

8.4 平方根

8.30 引理
设 N ∈ L ( V ) 是 幂 零 的 , 则 I + N 有 平 方 根 设N\in\mathcal{L}(V)是幂零的,则I+N有平方根 NL(V)I+N
书上用泰勒展开,再待定系数证

8.5 极小多项式

8.6 约当形

8.40引理
设 N ∈ L ( V ) 是 幂 零 的 , 那 么 存 在 向 量 v 1 , . . . , v k ∈ V 使 得 设N\in\mathcal{L}(V)是幂零的,那么存在向量v_1,...,v_k\in V使得 NL(V)v1,...,vkV使
a . ( v 1 , N v 1 , . . . , N m ( v 1 ) v 1 , . . . , v k , N v k , . . . , N m ( v k ) v k ) 是 V 的 基 a. (v_1,Nv_1,...,N^{m(v_1)}v_1,...,v_k,Nv_k,...,N^{m(v_k)}v_k)是V的基 a.(v1,Nv1,...,Nm(v1)v1,...,vk,Nvk,...,Nm(vk)vk)V
b . ( N m ( v 1 ) v 1 , . . . , N m ( v k ) v k ) 是 n u l l V 的 基 b. (N^{m(v_1)}v_1,...,N^{m(v_k)}v_k)是nullV的基 b.(Nm(v1)v1,...,Nm(vk)vk)nullV
其 中 m 是 表 示 使 得 N m ( v ) v ≠ 0 的 最 大 整 数 其中m是表示使得N^{m(v)}v\neq0的最大整数 m使Nm(v)v=0
怎么理解:把上面的形式化简一下,说的就是一个向量,交给幂零算子作用m次,只要还没变成0,那么前面每次作用的结果都是线性无关的。为什么这样,我们假设,有一个向量,交给幂零算子作用第m次的结果是前面m-1次的线性组合,那么第m+1次就也可以写成前面m-1次的线性组合,这样可以无穷作用下去,结果就是这个向量让幂零算子作用无穷次还不能等于0。矛盾!

因此,根据引理,幂零算子可以表示成矩阵
[ 0   1 0 . . . . 1 0   0 0 ] \begin{array}{lcl} \left[ \begin{array}{lcl} 0 \ 1 \quad \quad 0 \\ \quad .. .. \quad 1 \\ 0 \ 0 \quad \quad 0\\ \end{array} \right] \end {array} 0 10....10 00
就是对角线上方一排1
因此,T可以分解为约当基,即每个分块对角矩阵都是对角线是特征值,上面一排是1

[ λ j   1 0 . . . .     1 0   0 λ j ] \begin{array}{lcl} \left[ \begin{array}{lcl} \lambda_j \ 1 \quad \quad 0 \\ \quad .. .. \quad \ \,1 \\ 0 \ 0 \quad \quad \lambda_j\\ \end{array} \right] \end {array} λj 10.... 10 0λj

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值