①王强决定把年终奖用于购物,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 | 附件 |
电脑 | 打印机,扫描仪 |
书柜 | 图书 |
书桌 | 台灯,文具 |
工作椅 | 无 |
如果要买归类为附件的物品,必须先买该附件所属的主件,且每件物品只能购买一次。
每个主件可以有 0 个、 1 个或 2 个附件。附件不再有从属于自己的附件。
王强查到了每件物品的价格(都是 10 元的整数倍),而他只有 N 元的预算。除此之外,他给每件物品规定了一个重要度,用整数 1 ~ 5 表示。他希望在花费不超过 N 元的前提下,使自己的满意度达到最大。
满意度是指所购买的每件物品的价格与重要度的乘积的总和,假设设第ii件物品的价格为v[i]v[i],重要度为w[i]w[i],共选中了kk件物品,编号依次为j_1,j_2,...,j_kj1,j2,...,jk,则满意度为:v[j_1]*w[j_1]+v[j_2]*w[j_2]+ … +v[j_k]*w[j_k]v[j1]∗w[j1]+v[j2]∗w[j2]+…+v[jk]∗w[jk]。(其中 * 为乘号)
请你帮助王强计算可获得的最大的满意度。
输入描述:
输入的第 1 行,为两个正整数N,m,用一个空格隔开:
(其中 N ( N<32000 )表示总钱数, m (m <60 )为可购买的物品的个数。)
从第 2 行到第 m+1 行,第 j 行给出了编号为 j-1 的物品的基本数据,每行有 3 个非负整数 v p q
(其中 v 表示该物品的价格( v<10000 ), p 表示该物品的重要度( 1 ~ 5 ), q 表示该物品是主件还是附件。如果 q=0 ,表示该物品为主件,如果 q>0 ,表示该物品为附件, q 是所属主件的编号)
输出描述:
输出一个正整数,为张强可以获得的最大的满意度。
示例1
输入:
1000 5 800 2 0 400 5 1 300 5 1 400 3 0 500 2 0
复制输出:
2200
复制
示例2
输入:
50 5 20 3 5 20 3 5 10 3 0 10 2 0 10 1 0
复制输出:
130
复制说明:
由第1行可知总钱数N为50以及希望购买的物品个数m为5; 第2和第3行的q为5,说明它们都是编号为5的物品的附件; 第4~6行的q都为0,说明它们都是主件,它们的编号依次为3~5; 所以物品的价格与重要度乘积的总和的最大值为10*1+20*3+20*3=130
//
#include <iostream>
#include <vector>
#include<algorithm>
#include<string>
using namespace std;
int main() {
int N, m;
cin >> N >> m;
// 由于价格是10的整数倍,处理一下以降低空间/时间复杂度
//N = 10;
vector<vector<int> > prices(61, vector<int>(3, 0)); // 价格
vector<vector<int> > priceMultiplyPriority(61, vector<int>(3, 0)); // 重要程度
for (int i = 1; i <= m; ++i) {
int a, b, c;
cin >> a >> b >> c;
//a =a/10;
b *= a;
if (c == 0) {
prices[i][0] = a; priceMultiplyPriority[i][0] = b;
}
else {
if (prices[c][1] == 0) {//表示输入了第一个附件
prices[c][1] = a; priceMultiplyPriority[c][1] = b;
}
else {//表示输入了第二个附件,附件最多为2
prices[c][2] = a; priceMultiplyPriority[c][2] = b;
}
}
}
// 使用分组背包
vector<vector<int> > dp(m + 1, vector<int>(N + 1, 0));
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= N; ++j) {
//a是价格也就是主件占用的空间
int a = prices[i][0], b = priceMultiplyPriority[i][0];
//c是价格,也就是附件1占用的空间
int c = prices[i][1], d = priceMultiplyPriority[i][1];
//e是价格,也就是附件2占用的空间
int e = prices[i][2], f = priceMultiplyPriority[i][2];
//状态转移方程
//j >= a不成立,则第i个不放入价值为dp[i - 1][j]
//j >= a成立,则放入第i个物品,并且该物品是主件,dp[i - 1][j - a]前i-1个物品价值,空间为j - a
//这句话可以改写成容易理解的0-1背包问题
/*
dp[i][j]=dp[i - 1][j];
if(j>=a)
{
dp[i][j]=max(dp[i-1][j-a]+b,d[i][j]);
}
*/
dp[i][j] = j >= a ? max(dp[i - 1][j - a] + b, dp[i - 1][j]) : dp[i - 1][j];
//判断是否放入附件1
dp[i][j] = j >= (a + c) ? max(dp[i - 1][j - a - c] + b + d, dp[i][j]) : dp[i][j];
//判断是否放入附件2
dp[i][j] = j >= (a + e) ? max(dp[i - 1][j - a - e] + b + f, dp[i][j]) : dp[i][j];
//判断是否放入附件1、2
dp[i][j] = j >= (a + c + e) ? max(dp[i - 1][j - a - c - e] + b + d + f, dp[i][j]) : dp[i][j];
}
}
cout << dp[m][N] << endl;
}
// 64 位输出请用 printf("%lld")
②
现有n种砝码,重量互不相等,分别为 m1,m2,m3…mn ;
每种砝码对应的数量为 x1,x2,x3...xn 。现在要用这些砝码去称物体的重量(放在同一侧),问能称出多少种不同的重量。
注:
称重重量包括 0
数据范围:每组输入数据满足 1 \le n \le 10 \1≤n≤10 , 1 \le m_i \le 2000 \1≤mi≤2000 , 1 \le x_i \le 10 \1≤xi≤10
输入描述:
对于每组测试数据:
第一行:n --- 砝码的种数(范围[1,10])
第二行:m1 m2 m3 ... mn --- 每种砝码的重量(范围[1,2000])
第三行:x1 x2 x3 .... xn --- 每种砝码对应的数量(范围[1,10])
输出描述:
利用给定的砝码可以称出的不同的重量数
示例1
输入:
2 1 2 2 1
复制输出:
5
复制说明:
可以表示出0,1,2,3,4五种重量。
#include <iostream>
#include <vector>
#include <set>
using namespace std;
int main() {
int a[10],num,temp;
while(cin>>num){
vector<int> res;
for( int i = 0 ; i < num ; i++){
cin>>a[i];
}
for( int i = 0 ; i < num ; i++){
cin>>temp;
for(int j = 0 ; j < temp ; j ++) res.push_back(a[i]);
}
set<int> fres;
fres.insert(0);
for(int i = 0 ; i < res.size() ; i++){
set<int> tmp(fres);
for(set<int>::iterator it = tmp.begin(); it != tmp.end() ; it++){
fres.insert(*it + res[i]);
}
}
cout<<fres.size()<<endl;
}
}
实际上这个问题的动态过程我们是可以理解的,但是一开始很难用代码表达出这么清晰的逻辑,加入说初始的列表为:
5
1 2 3 4 5
2 1 3 1 2
那么其实我们可以给他初始化成 1 1 2 3 3 3 4 5 5
也就是初始矩阵的第一行位:
0 1 2 3 4 5
然后我们再考虑到重量为1的数目为2,所以可以在之前的重量上加1,就会生成
0 1 2 3 4 5 + 0+1 1+1 2+1 3+1 4+1 5+1
//因为是set,会过滤掉重复的数字,则会变成0 1 2 3 4 5 6
//那么下一次行列式初始化为0 1 2 3 4 5 6
//再因为重量为2的砝码只有一个,所以来到3
0 1 2 3 4 5 6 + 0+3 1+3 2+3 3+3 4+3 5+3 6+3
//之后行列式初始化为0 1 2 3 4 5 6 7 8 9