深度学习各层负责什么内容?

本文介绍了深度学习的基本概念,强调了其在会话识别、图像识别和对象侦测等领域的应用。深度学习起源于1986年的机器学习领域,随着2012年Alex Krizhevsky在ImageNet比赛中使用卷积网络获胜而受到广泛关注。文章详细解释了神经网络的层次结构,其中不同层级分别负责识别颜色、纹理、形状直至复杂对象的识别。
摘要由CSDN通过智能技术生成

1、深度学习——神经网络简介

深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。

深度学习

深度学习方法近年来,在会话识别、图像识别和对象侦测等领域表现出了惊人的准确性。

但是,“深度学习”这个词语很古老,它在1986年由Dechter在机器学习领域提出,然后在2000年有Aizenberg等人引入到人工神经网络中。而现在,由于Alex Krizhevsky在2012年使用卷积网络结构赢得了ImageNet比赛之后受到大家的瞩目。

卷积网络之父:Yann LeCun

卷积网络之父:Yann LeCun

深度学习演示

链接:http://playground.tensorflow.org

深度学习演示

2、深度学习各层负责内容

神经网络各层负责内容:

1层:负责识别颜色及简单纹理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值