文献阅读:Feature Pyramid Networks for Object Detection

摘要:特征金字塔(Feature pyramids)是用于检测不同尺度(at different scales)的对象的识别系统中的基本组件。 但是最近的深度学习物体检测器(object detectors)已经避免了金字塔表示(pyramid representations),部分原因(in part because)是它们的计算复杂度高(they are compute and memory intensive)。在本文中,我们利用深层卷积网络(deep convolutional networks)固有的(inherent)多尺度金字塔层次结构来构造特征金字塔,这只是稍微的(marginal )增加计算成本。开发了具有横向连接(lateral connections)的自上而下架构(A topdown architecture),用于在所有尺度上(at all scales)构建高级语义特征图(high-level semantic feature maps)。这种称为特征金字塔网络(FPN)的体系结构在几个应用程序中作为通用特征提取器(generic feature extractor)显示出显着的改进。在基于Faster R-CNN系统中使用FPN,我们的方法在COCO检测基准测试基准上实现了最先进(state-of-the-art)的单一模型结果(single-model),没有花里胡哨(without bells and whistles),超越了所有(surpassing all)现有的单一模型,包括来自COCO 2016挑战赛获胜者。此外,我们的方法可以在GPU上以6 FPS运行,因此是多尺度物体检测(multi-scale object detection)的实用且准确的解决方案。 代码将公开发布。
在这里插入图片描述
图1.**(a)使用图像金字塔构建特征金字塔。 在每种尺度图像上独立地计算特征,这是缓慢的。(b)**最近的检测系统选择仅(have opted to)使用单一尺度特征(scale features)来加快检测速度。 **(c)另一种方法是重用由ConvNet计算的金字塔特征层次结构( pyramidal feature hierarchy ),就好像它是一个特征化的图像金字塔(featurized image pyramid)。(d)**我们提出的特征金字塔网络(FPN)和(b)、(c)一样快,但更准确。 在此图中,特征图(feature maps)以蓝色轮廓表示,较粗的轮廓(thicker outlines)表示语义较强的特征。

1. Introduction(简介)

识别不同尺度(at vastly different scales)的物体是计算机视觉中的一项基本挑战。 基于图像金字塔构建的特征金字塔(简称特征图像金字塔)构成了标准解决方案的基础[1](图1(a))。这些金字塔在尺度上是不变的(scale-invariant),因为物体的尺度变化通过在金字塔中移动其水平来抵消(an object’s scale change is offset by shifting its level in the pyramid)。 直观地(Intuitively),此属性使模型能够通过在两个位置和金字塔等级上扫描模型来检测大范围尺度(a large range of scales)的对象。特征图像金字塔(Featurized image pyramids)在手工设计(hand-engineered features)特征的时代(in the era of)被大量使用[5,25]。 它们非常关键,像DPM这样的物体探测器[7]需要进行密集的采样(dense scale sampling)以获得良好的结果(e.g., 10 scales per octave)。

对于识别任务,手动设计的特征(engineered features)已经基本上被深度卷积网络(ConvNets)[19,20]计算的特征所取代。 除了( Aside from being)能够表示更高级别的语义(higher-level semantics)之外,ConvNets对于尺度变化(variance in scale )也更加稳健(are robust to ),因此有助于(facilitate)从单个输入规模计算的特征进行识别[15,11,29](图1(b))。但即使有这种稳健性,仍然需要金字塔才能获得最准确的结果。 ImageNet [33]和COCO [21]检测挑战中最近的所有顶级结果( top entries )都使用对特征化图像金字塔(featurized image pyramids)进行多尺度测试(multi-scale testing)(例如,[16,35])。对图像金字塔的每个级别进行特征化的主要优点(principle advantage)是它产生了多尺度特征表示,其中所有级别在语义(semantically)上都很强,包括高分辨率级别(high-resolution levels)。然而(Nevertheless),对图像金字塔的每个级别进行特征化(featurizing each level of an image pyramid)具有明显的局限性。 推理时间(Inference time)显着增加(例如,增加四倍[11]),使得这种方法对于实际应用来说是不切实际(impractical )的。此外(Moreover),在图像金字塔上端到端地训练深度网络在内存方面是不可行的,因此,如果被利用(exploited),图像金字塔仅在测试时[15,11,16,35]使用,这会产生不一致(inconsistency)训练/测试时间推断(inference)。 出于这些原因, Fast 和Faster R-CNN [11,29]选择(opt to)在默认设置下不使用特征化的图像金字塔。

但是,图像金字塔不是计算多尺度特征表示(multi-scale feature representation)的唯一方法。 深层ConvNet逐层计算特征层次(feature hierarchy)结构,对于子采样层(with subsampling layers),特征层次结构(feature hierarchy)具有固有的多尺度(inherent multiscale)金字塔形状。 这种网内(in-network)特征层次结构产生不同空间分辨率的特征图(resolutions),但引入了由不同深度引起的大的语义鸿沟(semantic gaps)。 高分辨率图(high-resolution maps)具有低级别(low-level features)的特征,这些特征会损害其对象识别的表征能力。

单次检测器(The Single Shot Detector)(SSD)[22]是使用ConvNet的金字塔特征层次结构(pyramidal feature hierarchy)的第一次尝试之一,就好像它是一个特征化的图像金字塔(featurized image pyramid)(图1(c))。 理想情况下(Ideally),SSD式金字塔将重复使用前向传递中计算的不同层的多尺度特征图,没有花费多少。 但是为了避免使用低级功能,SSD放弃重新使用已计算的层,而是从网络中的高位开始构建金字塔(例如,VGG网络的conv4 3 [36]),然后再添加几个新层。 因此,它错过了重用特征层次结构的更高分辨率地图的机会。 我们证明这些对于检测小物体很重要。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 特征金字塔网络(Feature Pyramid Networks, FPN)是一种用于目标检测的神经网络架构。它通过在深层特征图上构建金字塔结构来提高空间分辨率,从而更好地检测小目标。FPN具有高效的多尺度特征表示和鲁棒性,在COCO数据集上取得了很好的表现。 ### 回答2: 特征金字塔网络(Feature Pyramid Networks,简称FPN)是一种用于目标检测的深度学习模型。该模型是由FAIR(Facebook AI Research)在2017年提出的,旨在解决单一尺度特征不能有效检测不同大小目标的问题。 传统的目标检测算法通常采用的是滑动窗口法,即在图像上以不同大小和不同位置进行滑动窗口的检测。但是,这种方法对于不同大小的目标可能需要不同的特征区域来进行检测,而使用单一尺度特征可能会导致对小目标的错误检测或漏检。FPN通过利用图像金字塔和多层特征提取,将不同尺度的特征合并起来,从而达到对不同大小目标的有效检测。 FPN主要分为两个部分:上采样路径(Top-Down Pathway)和下采样路径(Bottom-Up Pathway)。下采样路径主要是通过不同层级的卷积神经网络(CNN)来提取特征,每层都采用了非极大值抑制(Non-Maximum Suppression,NMS)方法来选择最具有代表性的特征。上采样路径则主要是将低层特征进行上采样操作,使其与高层特征的尺寸对齐,并与高层特征相加,实现特征融合。 FPN在目标检测中的优势体现在以下几个方面。首先,FPN可以提高模型对小目标的检测能力,同时仍保持对大目标的检测准确度。其次,FPN的特征金字塔结构可以在一次前向传递中完成目标检测,减少了计算时间。最后,FPN对于输入图像的尺寸和分辨率不敏感,可以在不同分辨率的图像上进行目标检测,从而适应多种应用场景。 总之,FPN是一种在目标检测领域中得到广泛应用的模型,其特征金字塔结构能够有效地解决单一尺度特征不足以检测不同大小目标的问题,并在检测准确率和计算效率方面取得了不错的表现。 ### 回答3: 特征金字塔网络是一种用于目标检测的深度学习模型,主要解决的问题是在不同尺度下检测不同大小的物体。在传统的卷积神经网络中,网络的特征图大小会不断减小,因此只能检测较小的物体,对于较大的物体则无法很好地检测。而特征金字塔网络则通过在底部特征图的基础上构建一个金字塔状的上采样结构,使得网络能够在不同尺度下检测不同大小的物体。 具体来说,特征金字塔网络由两个主要部分构成:共享特征提取器和金字塔结构。共享特征提取器是一个常规的卷积神经网络,用于提取输入图像的特征。而金字塔结构包括多个尺度的特征图,通过上采样和融合来获得不同尺度的特征表示。这些特征图之后被输入到后续的目标检测网络中,可以通过这些特征图来检测不同尺度的物体。 特征金字塔网络可以有效地解决目标检测任务中的尺度问题,并且在许多实际应用中表现出了优异的性能。例如,通过使用特征金字塔网络,在COCO数据集上得到的目标检测结果明显优于现有的一些目标检测算法。 总之,特征金字塔网络是一种非常有效的深度学习模型,可以处理目标检测任务中的尺度问题,提高模型在不同大小物体的检测精度。它在实际应用中具有很高的价值和应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值