Feature Pyramid Networks for Object Detection 学习笔记

Feature Pyramid Networks for Object Detection 学习笔记

技术小白一枚,这是我的第一遍学习笔记,主要是为了记录自己看过的论文记录。。不是为了分享给大佬们看的,写的不好的地方请大佬们谅解

本篇论文主要包含以下几个部分:

  • 摘要
  • 简介
  • FPN结构介绍
  • 应用
  • 实验

摘要

利用固有的多规模,金字塔层的深层卷积网络,以边缘切割为代价来构造特征金字塔网络,在top-down的基础上在Fast R-CNN 上使用该网络,并在COCO 数据集上取得单模型上的最好效果。

简介

这部分主要介绍了之前现有的一些利用金字塔模型的网络结构,但是它们都存在一定的缺陷,引出该方法的优势。

  • Featurized image pyramid 用图像金字塔生成特征金字塔
  • Single feature map 只在特征的最上层预测
  • Pyramidal feature hierarchy分层预测
  • Feature Pyramid Network 本文的特征金字塔网络
    这里写图片描述

  • 第一种结构对不同尺寸的图片生成不同尺寸的特征图,形成金字塔结构,这种的比较费时,而且要把同一张图做成不同的尺寸,显然麻烦

  • 第二种则比较单一
  • 第三种会错过高层的特征信息,没有对高分辨率图的特征进行合理的利用,总之就是别人的肯定都有缺陷,以此引出自己的很厉害啦
  • 第四种是本文的方法,把低层的细节和高层的特征进行融合,取得了很好的效果,还不费时费内存

The goal of this paper is to naturally leverage the pyramidal shape of a ConvNet’s feature hierarchy while creating a feature pyramid that has strong semantics at all scales.

特征金字塔网络

主要包含三个部分:

  • bottom-up pathway
  • top-down pathway
  • lateral connections

bottom-up pathway

自下而上的路径方法是所有网络的基本的方法,对图片的特征从小往上依次提取,低层的细节多,高层的特征性强

top-down pathway

自上而下的路径是本文中用到的,吧高层的特征进行*2之后,和低层的进行融合,从上往下依次表示,形成金字塔网络

lateral connections 横向连接

在本文的方法中,将低层的网络进行1*1的conv之后,横向传递与高层down下来的进行融合,后面的实验证明这个方法起了很大的作用

这里写图片描述

这里写图片描述

应用

该文中主要对FPN 的两个应用:

  1. in RPN for bounding box proposal
  2. in Fast R-CNN for object detection

    因为我在fast R-cnn这一块才在入门,所以对一些网络专有的名次还不是很懂,只能大概理解一下

在RPN中,用FPN来替代单尺度的特征图
在fast R-CNN中,FRCNN本身是一个区域的目标检测器,ROI池用于分割特征,在这里,为了配合FPN,作者将ROI不同比例分配到不同的金字塔级上,将conv5用来构建特征金字塔,ROI用来分离7*7特征,将两个隐藏的1024-d的fc层放在最终分类器的bounding box回归层之前,作为头部,更轻并且更快。

具体的一些细节,以及应用,在实验部分有更加详细的说明。可惜的是,这篇论文中并没有给出具体的改造的网络图,只能靠自己理解想象了。。。。sad

实验部分

实验部分给了很多对比的数据表,有RPN的,有Fast R-CNN的,还有Faster的,其中分别有用到top-down的,和用到横向连接的,对比很清晰,就不一一赘述了
这里写图片描述

这里写图片描述

这里写图片描述

单模型

这里写图片描述

### 回答1: 特征金字塔网络Feature Pyramid Networks, FPN)是一种用于目标检测的神经网络架构。它通过在深层特征图上构建金字塔结构来提高空间分辨率,从而更好地检测小目标。FPN具有高效的多尺度特征表示和鲁棒性,在COCO数据集上取得了很好的表现。 ### 回答2: 特征金字塔网络Feature Pyramid Networks,简称FPN)是一种用于目标检测的深度学习模型。该模型是由FAIR(Facebook AI Research)在2017年提出的,旨在解决单一尺度特征不能有效检测不同大小目标的问题。 传统的目标检测算法通常采用的是滑动窗口法,即在图像上以不同大小和不同位置进行滑动窗口的检测。但是,这种方法对于不同大小的目标可能需要不同的特征区域来进行检测,而使用单一尺度特征可能会导致对小目标的错误检测或漏检。FPN通过利用图像金字塔和多层特征提取,将不同尺度的特征合并起来,从而达到对不同大小目标的有效检测。 FPN主要分为两个部分:上采样路径(Top-Down Pathway)和下采样路径(Bottom-Up Pathway)。下采样路径主要是通过不同层级的卷积神经网络(CNN)来提取特征,每层都采用了非极大值抑制(Non-Maximum Suppression,NMS)方法来选择最具有代表性的特征。上采样路径则主要是将低层特征进行上采样操作,使其与高层特征的尺寸对齐,并与高层特征相加,实现特征融合。 FPN在目标检测中的优势体现在以下几个方面。首先,FPN可以提高模型对小目标的检测能力,同时仍保持对大目标的检测准确度。其次,FPN的特征金字塔结构可以在一次前向传递中完成目标检测,减少了计算时间。最后,FPN对于输入图像的尺寸和分辨率不敏感,可以在不同分辨率的图像上进行目标检测,从而适应多种应用场景。 总之,FPN是一种在目标检测领域中得到广泛应用的模型,其特征金字塔结构能够有效地解决单一尺度特征不足以检测不同大小目标的问题,并在检测准确率和计算效率方面取得了不错的表现。 ### 回答3: 特征金字塔网络是一种用于目标检测的深度学习模型,主要解决的问题是在不同尺度下检测不同大小的物体。在传统的卷积神经网络中,网络的特征图大小会不断减小,因此只能检测较小的物体,对于较大的物体则无法很好地检测。而特征金字塔网络则通过在底部特征图的基础上构建一个金字塔状的上采样结构,使得网络能够在不同尺度下检测不同大小的物体。 具体来说,特征金字塔网络由两个主要部分构成:共享特征提取器和金字塔结构。共享特征提取器是一个常规的卷积神经网络,用于提取输入图像的特征。而金字塔结构包括多个尺度的特征图,通过上采样和融合来获得不同尺度的特征表示。这些特征图之后被输入到后续的目标检测网络中,可以通过这些特征图来检测不同尺度的物体。 特征金字塔网络可以有效地解决目标检测任务中的尺度问题,并且在许多实际应用中表现出了优异的性能。例如,通过使用特征金字塔网络,在COCO数据集上得到的目标检测结果明显优于现有的一些目标检测算法。 总之,特征金字塔网络是一种非常有效的深度学习模型,可以处理目标检测任务中的尺度问题,提高模型在不同大小物体的检测精度。它在实际应用中具有很高的价值和应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值