手上只有一个模型文件,怎样用tensorboard查看其模型图Graph?

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/czq7511/article/details/72480149

比如,从他人处获得一个Graph,想看看它的结构,怎么弄?

Google提供了一个工具,TensorBoard,它能以图表的方式分析你在训练过程中汇总的各种数据,其中包括Graph结构。

所以我们可以简单的写几行Pyhton,加载Graph,只在logdir里,输出Graph结构数据,并可以查看其图结构。

可参考:http://www.tensorfly.cn/tfdoc/how_tos/summaries_and_tensorboard.html

https://www.tensorflow.org/get_started/summaries_and_tensorboard

你可以在jupyter里操作,代码如下:

import tensorflow as tf
from tensorflow.python.platform import gfile

# 这是从二进制格式的pb文件加载模型
graph = tf.get_default_graph()
graphdef = graph.as_graph_def()
graphdef.ParseFromString(gfile.FastGFile("/data/TensorFlowAndroidMNIST/app/src/main/expert-graph.pb", "rb").read())
_ = tf.import_graph_def(graphdef, name="")


#这是从文件格式的meta文件加载模型

_ = tf.train.import_meta_graph("model.ckpt.meta")


summary_write = tf.summary.FileWriter("/data/TensorFlowAndroidMNIST/logdir" , graph)


然后再启动tensorboard:

tensorboard --logdir /data/TensorFlowAndroidMNIST/logdir --host 你的ip --port 你端口(默认6006)

展开阅读全文

没有更多推荐了,返回首页