考研数学证明题快速方法

这篇博客详细讲解了考研数学中证明等式、不等式和方程根的解题方法,涵盖微分中值定理的应用,如罗尔定理、零点定理和介值定理。通过具体例题解析,阐述如何构造函数和利用导数性质来证明各种数学命题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、证明等式

微分中值定理

零点定理:若两个 端点值 乘积小于零,则函数存在零点。
罗尔定理:若两个 端点值 相等,则存在导数为零。
介值定理:介于两者之间。

例1

f ( x ) , g ( x ) f(x),g(x) f(x)g(x) [ a , b ] [a,b] [a,b] 二阶可导, f ( a ) = f ( b ) = g ( a ) = g ( b ) = 0 f(a)=f(b)=g(a)=g(b)=0 f(a)=f(b)=g(a)=g(b)=0.

证明: ∃ ξ ∈ ( a , b ) , f ( ξ ) g ′ ′ ( ξ ) = g ( ξ ) f ′ ′ ( ξ ) \exist ξ \in (a,b),f(ξ)g''(ξ)=g(ξ)f''(ξ) ξ(a,b)f(ξ)g′′(ξ)=g(ξ)f′′(ξ).

分析:

  1. 证明等式中含希腊字母 ξ 、 η ξ、η ξη 等;
  2. 需证明等式含导数。

使用 罗尔定理 ,将等式构造为 导函数,等价证明 导函数等于零 即可。

解:

第一步:构造导函数 F ′ ( x ) = f ( x ) g ′ ′ ( x ) − g ( x ) f ′ ′ ( x ) F'(x) = f(x)g''(x) - g(x)f''(x) F(x)=f(x)g′′(x)g(x)f′′(x)
F ′ ( x ) = f ( x ) g ′ ′ ( x ) + f ′ ( x ) g ′ ( x ) − f ′ ( x ) g ′ ( x ) − g ( x ) f ′ ′ ( x ) F'(x)=f(x)g''(x) + f'(x)g'(x) - f'(x)g'(x) - g(x)f''(x) F(x)=f(x)g′′(x)+f(x)g(x)f(x)g(x)g(x)f′′(x)
第二步:原函数 F ( x ) = f ( x ) g ′ ( x ) − f ′ ( x ) g ( x ) + C F(x)=f(x)g'(x) - f'(x)g(x) + C F(x)=f(x)g(x)f(x)g(x)+C
第三步:端点值 F ( a ) = f ( a ) g ′ ( a ) − f ′ ( a ) g ( a ) + C = C F(a) = f(a)g'(a) - f'(a)g(a) + C = C F(a)=f(a)g(a)f(a)g(a)+C=C
F ( b ) = f ( b ) g ′ ( b ) − f ′ ( b ) g ( b ) + C = C F(b) = f(b)g'(b) - f'(b)g(b) + C = C F(b)=f(b)g(b)f(b)g(b)+C=C
F ( a ) = F ( b ) F(a) = F(b) F(a)=F(b)
第四步:由罗尔定理可知 ∃ ξ ∈ ( a , b ) \exist ξ \in (a,b) ξ(a,b),使得 F ′ ( ξ ) = 0 F'(ξ)=0 F(ξ)=0
f ( ξ ) g ′ ′ ( ξ ) = g ( ξ ) f ′ ′ ( ξ ) f(ξ)g''(ξ)=g(ξ)f''(ξ) f(ξ)g′′(ξ)=g(ξ)f′′(ξ)

例2

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上连续,在 ( a , b ) (a,b) (a,b) 上可导, f ( a ) = f ( b ) = 0 f(a)=f(b)=0 f(a)=f(b)=0.

证明:
(1) ∃ ξ ∈ ( a , b ) \exist \xi \in (a,b) ξ(a,b),使 ξ f ( ξ ) + f ′ ( ξ ) = 0 \xi f(\xi) + f'(\xi)=0 ξf(ξ)+f(ξ)=0.
(2) ∃ η ∈ ( a , b ) \exist \eta \in (a,b) η(a,b),使 f ( η ) + η f ′ ( η ) = 0 f(\eta) + \eta f'(\eta) =0 f(η)+ηf(η)=0.

分析:
(1)含希腊字母,有导数,罗尔定理
(2)含希腊字母,有导数,罗尔定理

(1)

第一步:构造导函数 F ′ ( x ) = x f ( x ) + f ′ ( x ) F'(x)=xf(x) + f'(x) F(x)=xf(x)+f(x)
第二步:原函数 F ( x ) = f ( x ) e 1 2 x 2 + C F(x)=f(x) e^{\frac{1}{2}x^2}+C F(x)=f(x)e21x2+C
第三步:端点值 F ( a ) = F ( b ) = C F(a)=F(b)=C F(a)=F(b)=C
第四步:罗尔定理 ∃ ξ ∈ ( a , b ) \exist \xi \in (a,b) ξ(a,b),使 F ′ ( ξ ) = 0 F'(\xi)=0 F(ξ)=0
ξ f ( ξ ) + f ′ ( ξ ) = 0 \xi f(\xi) + f'(\xi)=0 ξf(ξ)+f(ξ)=0.

(2)

第一步:构造导函数 F ′ ( x ) = f ( x ) + x f ′ ( x ) F'(x)= f(x) + xf'(x) F(x)=f(x)+xf(x)
第二步:原函数 F ( x ) = f ( x ) e ln ⁡ x + C F(x)=f(x) e^{\ln x}+C F(x)=f(x)elnx+C
第三步:端点值 F ( a ) = F ( b ) = C F(a)=F(b)=C F(a)=F(b)=C
第四步:罗尔定理 ∃ η ∈ ( a , b ) \exist \eta \in (a,b) η(a,b),使 F ′ ( η ) = 0 F'(\eta)=0 F(η)=0
f ( η ) + η f ′ ( η ) = 0 f(\eta) + \eta f'(\eta) =0 f(η)+ηf(η)=0.

例3

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上连续,在 ( a , b ) (a,b) (a,b) 上可导, f ( 0 ) = f ( 1 ) = 0 , f ( 1 2 ) = 1 f(0)=f(1)=0,f(\frac{1}{2})=1 f(0)=f(1)=0f(21)=1.

证明:
(1) ∃ η ∈ ( 1 2 , 1 ) \exist η \in (\frac{1}{2},1) η(21,1),使 f ( η ) = η f(η)=η f(η)=η
(2) ∀ λ \forall λ

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值