一、证明等式
微分中值定理
零点定理:若两个 端点值
乘积小于零,则函数存在零点。
罗尔定理:若两个 端点值
相等,则存在导数为零。
介值定理:介于两者之间。
例1
设 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 在 [ a , b ] [a,b] [a,b] 二阶可导, f ( a ) = f ( b ) = g ( a ) = g ( b ) = 0 f(a)=f(b)=g(a)=g(b)=0 f(a)=f(b)=g(a)=g(b)=0.
证明: ∃ ξ ∈ ( a , b ) , f ( ξ ) g ′ ′ ( ξ ) = g ( ξ ) f ′ ′ ( ξ ) \exist ξ \in (a,b),f(ξ)g''(ξ)=g(ξ)f''(ξ) ∃ξ∈(a,b),f(ξ)g′′(ξ)=g(ξ)f′′(ξ).
分析:
- 证明等式中含希腊字母 ξ 、 η ξ、η ξ、η 等;
- 需证明等式含导数。
使用 罗尔定理 ,将等式构造为 导函数,等价证明 导函数等于零 即可。
解:
第一步:构造导函数 | 令 F ′ ( x ) = f ( x ) g ′ ′ ( x ) − g ( x ) f ′ ′ ( x ) F'(x) = f(x)g''(x) - g(x)f''(x) F′(x)=f(x)g′′(x)−g(x)f′′(x) |
---|---|
F ′ ( x ) = f ( x ) g ′ ′ ( x ) + f ′ ( x ) g ′ ( x ) − f ′ ( x ) g ′ ( x ) − g ( x ) f ′ ′ ( x ) F'(x)=f(x)g''(x) + f'(x)g'(x) - f'(x)g'(x) - g(x)f''(x) F′(x)=f(x)g′′(x)+f′(x)g′(x)−f′(x)g′(x)−g(x)f′′(x) | |
第二步:原函数 | F ( x ) = f ( x ) g ′ ( x ) − f ′ ( x ) g ( x ) + C F(x)=f(x)g'(x) - f'(x)g(x) + C F(x)=f(x)g′(x)−f′(x)g(x)+C |
第三步:端点值 | F ( a ) = f ( a ) g ′ ( a ) − f ′ ( a ) g ( a ) + C = C F(a) = f(a)g'(a) - f'(a)g(a) + C = C F(a)=f(a)g′(a)−f′(a)g(a)+C=C |
F ( b ) = f ( b ) g ′ ( b ) − f ′ ( b ) g ( b ) + C = C F(b) = f(b)g'(b) - f'(b)g(b) + C = C F(b)=f(b)g′(b)−f′(b)g(b)+C=C | |
F ( a ) = F ( b ) F(a) = F(b) F(a)=F(b) | |
第四步:由罗尔定理可知 | ∃ ξ ∈ ( a , b ) \exist ξ \in (a,b) ∃ξ∈(a,b),使得 F ′ ( ξ ) = 0 F'(ξ)=0 F′(ξ)=0 , |
即 f ( ξ ) g ′ ′ ( ξ ) = g ( ξ ) f ′ ′ ( ξ ) f(ξ)g''(ξ)=g(ξ)f''(ξ) f(ξ)g′′(ξ)=g(ξ)f′′(ξ)。 |
例2
设 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上连续,在 ( a , b ) (a,b) (a,b) 上可导, f ( a ) = f ( b ) = 0 f(a)=f(b)=0 f(a)=f(b)=0.
证明:
(1) ∃ ξ ∈ ( a , b ) \exist \xi \in (a,b) ∃ξ∈(a,b),使 ξ f ( ξ ) + f ′ ( ξ ) = 0 \xi f(\xi) + f'(\xi)=0 ξf(ξ)+f′(ξ)=0.
(2) ∃ η ∈ ( a , b ) \exist \eta \in (a,b) ∃η∈(a,b),使 f ( η ) + η f ′ ( η ) = 0 f(\eta) + \eta f'(\eta) =0 f(η)+ηf′(η)=0.
分析:
(1)含希腊字母,有导数,罗尔定理
(2)含希腊字母,有导数,罗尔定理
(1)
第一步:构造导函数 | 令 F ′ ( x ) = x f ( x ) + f ′ ( x ) F'(x)=xf(x) + f'(x) F′(x)=xf(x)+f′(x) |
---|---|
第二步:原函数 | F ( x ) = f ( x ) e 1 2 x 2 + C F(x)=f(x) e^{\frac{1}{2}x^2}+C F(x)=f(x)e21x2+C |
第三步:端点值 | F ( a ) = F ( b ) = C F(a)=F(b)=C F(a)=F(b)=C |
第四步:罗尔定理 | ∃ ξ ∈ ( a , b ) \exist \xi \in (a,b) ∃ξ∈(a,b),使 F ′ ( ξ ) = 0 F'(\xi)=0 F′(ξ)=0, |
即 ξ f ( ξ ) + f ′ ( ξ ) = 0 \xi f(\xi) + f'(\xi)=0 ξf(ξ)+f′(ξ)=0. |
(2)
第一步:构造导函数 | 令 F ′ ( x ) = f ( x ) + x f ′ ( x ) F'(x)= f(x) + xf'(x) F′(x)=f(x)+xf′(x) |
---|---|
第二步:原函数 | F ( x ) = f ( x ) e ln x + C F(x)=f(x) e^{\ln x}+C F(x)=f(x)elnx+C |
第三步:端点值 | F ( a ) = F ( b ) = C F(a)=F(b)=C F(a)=F(b)=C |
第四步:罗尔定理 | ∃ η ∈ ( a , b ) \exist \eta \in (a,b) ∃η∈(a,b),使 F ′ ( η ) = 0 F'(\eta)=0 F′(η)=0, |
即 f ( η ) + η f ′ ( η ) = 0 f(\eta) + \eta f'(\eta) =0 f(η)+ηf′(η)=0. |
例3
设 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上连续,在 ( a , b ) (a,b) (a,b) 上可导, f ( 0 ) = f ( 1 ) = 0 , f ( 1 2 ) = 1 f(0)=f(1)=0,f(\frac{1}{2})=1 f(0)=f(1)=0,f(21)=1.
证明:
(1) ∃ η ∈ ( 1 2 , 1 ) \exist η \in (\frac{1}{2},1) ∃η∈(21,1),使 f ( η ) = η f(η)=η f(η)=η
(2) 对 ∀ λ \forall λ