Advanced控制理论

参考:DR_CAN

相关阅读:

本文 pdf 及Matlab仿真下载链接:

链接:https://pan.baidu.com/s/1DKWTOAMI8eGYpuGR-eWYSg
提取码:6666

1.介绍

目标:让咖啡温度保持在95度

在这里插入图片描述

其他因素也会影响系统的输出,如:

√ \surd M w M_w Mw:水的质量
√ \surd C p w Cp_{w} Cpw:水比热
× \times × T a T_a Ta:空气温度
× \times × V a V_a Va:空气流动速度
× \times × ε \varepsilon ε:传热效率

  当系统中所有的量都已知时,一定有一种方法来调节开关,使得系统的输出稳定在一个固定值上。但是空气温度、空气流动速度和传热效率都难以测得。引入一个反馈系统(Feedback System)能很好的解决这个问题,引入新的变量:误差(Error)
e = T w d − T w e=T_{wd}-T_{w} e=TwdTw
其中 T w d T_{wd} Twd为目标温度, T w T_w Tw为实际温度。

控制系统则变为下图

在这里插入图片描述

P s = u ( e ) P_s=u(e) Ps=u(e)
目标是使得误差e趋于0。

2.状态空间State Space

弹簧质量阻尼系统
在这里插入图片描述

输入: u ( t ) = f ( t ) u(t)=f(t) u(t)=f(t)
输出: x x x

f k = k x , f B = B x ˙ f_k=kx,f_B=B \dot{x} fk=kx,fB=Bx˙

由牛顿第二定律F=ma得:
m x ¨ = f ( t ) − f k − f B ⇒ m x ¨ + B x ˙ + k x = f k \begin{aligned} &m \ddot{x} = f(t)-f_k-f_B\\ &\Rightarrow m \ddot{x}+B \dot{x}+kx = f_k \end{aligned} mx¨=f(t)fkfBmx¨+Bx˙+kx=fk

对式子两端进行拉普拉斯变换得到传递函数:
L [ m x ¨ + B x ˙ + k x ] = L [ f k ] ⇒ m s 2 X ( s ) + B s X ( s ) + k X ( s ) = F ( s ) ⇒ G ( s ) = X ( s ) F ( s ) = 1 m s 2 + B s + k \begin{aligned} &\mathcal{L}\left [ m \ddot{x}+B \dot{x}+kx \right ] = \mathcal{L}[f_k]\\\\ &\Rightarrow ms^2 X(s)+BsX(s)+kX(s) = F(s)\\\\ &\Rightarrow G(s) = \frac{X(s)}{F(s)} = \frac{1}{ms^2+Bs+k} \end{aligned} L[mx¨+Bx˙+kx]=L[fk]ms2X(s)+BsX(s)+kX(s)=F(s)G(s)=F(s)X(s)=ms2+Bs+k1

这是经典控制理论的表达式,在现代控制理论当中,用的是状态-空间表达。状态-空间可以看作是包含系统的输入、输出和状态变量的一个集合,集合则用一阶微分方程表达。
状 态 − 空 间 : 集 合 { 输 入 输 出 状 态 变 量 } 一 阶 微 分 方 程 状态-空间:集合 \begin{Bmatrix} 输入\\ 输出\\ 状态变量 \end{Bmatrix}一阶微分方程

m x ¨ + B x ˙ + k x = f k m \ddot{x}+B \dot{x}+kx = f_k mx¨+Bx˙+kx=fk
选择状态变量,消除高阶项
状态 { z 1 = x z 2 = x ˙ \begin{cases}\begin{aligned}z_1 & = x\\z_2 & = \dot{x}\end{aligned}\end{cases} { z1z2=x=x˙
{ z ˙ 1 = x ˙ = z 2 z ˙ 2 = x ¨ = f ( t ) − B x ˙ − k x ) 1 m = 1 m u ( t ) − B m z 2 − k m z 1 \begin{cases}\begin{aligned} \dot{z}_1 & = \dot{x} = z_2\\ \dot{z}_2 & = \ddot{x} = f(t)-B\dot{x}-kx)\frac{1}{m} = \frac{1}{m}u(t)-\frac{B}{m}z_2-\frac{k}{m}z_1 \end{aligned}\end{cases} z˙1z˙2=x˙=z2=x¨=f(t)Bx˙kx)m1=m1u(t)mBz2mkz1

写成线性代数形式
[ z ˙ 1 z ˙ 2 ] = [ 0 1 − k m − B m ] [ z 1 z 2 ] + [ 0 1 m ] [ u ( t ) ] \begin{bmatrix} \dot{z}_1 \\\dot{z}_2 \end{bmatrix}= \begin{bmatrix}0&1\\-\frac{k}{m}&-\frac{B}{m} \end{bmatrix} \begin{bmatrix}z_1\\z_2\end{bmatrix}+ \begin{bmatrix}0\\\frac{1}{m}\end{bmatrix} \begin{bmatrix}u(t)\end{bmatrix} [z˙1z˙2]=[0mk1mB][z1z2]+[0m1][u(t)]

y = [ 1 0 ] [ z 1 z 2 ] + [ 0 ] [ u ( t ) ] y= \begin{bmatrix} 1&0\end{bmatrix} \begin{bmatrix} z_1\\z_2\end{bmatrix}+ \begin{bmatrix} 0\end{bmatrix} \begin{bmatrix} u(t)\end{bmatrix} y=[10][z1z2]+[0][u(t)]

Z ˙ = A z + B u y = C z + D u A = [ 0 1 − k m − B m ] , B = [ 0 1 m ] , C = [ 1 0 ] , D = 0 \dot{Z}=Az+Bu\\ y=Cz+Du\\ A=\begin{bmatrix}0&1\\-\frac{k}{m}&-\frac{B}{m}\end{bmatrix}, B=\begin{bmatrix}0\\\frac{1}{m}\end{bmatrix}, C=\begin{bmatrix} 1&0\end{bmatrix}, D=0 Z˙=Az+Buy=Cz+DuA=[0mk1mB],B=[0m1],C=[10],D=0

状态-空间方程的传递函数和动态方程的传递函数的关系

对系统的状态-空间方程作拉普拉斯变换:
L [ Z ˙ ] = L [ A z + B u ] ⇒ s Z ( s ) = A Z ( s ) + B U ( s ) ⇒ Z ( s ) = ( s I − A ) − 1 B U ( s ) \mathcal{L} [\dot{Z}]=\mathcal{L} [Az+Bu]\\ \Rightarrow sZ(s)=AZ(s)+BU(s)\\ \Rightarrow Z(s)=(sI-A)^{-1}BU(s) L[Z˙]=L[Az+Bu]sZ(s)=AZ(s)+BU(s)Z(s)=(sIA)1BU(s)
其中 I I I为单位矩阵。

对系统的输出作拉普拉斯变换:
L [ y ] = L [ C z + D u ] \mathcal{L}[y]=\mathcal{L}[Cz+Du] L[y]=L[Cz+Du]
⇒ Y ( s ) = C Z ( s ) + D U ( s ) = C ( s I − A ) − 1 B U ( s ) + D U ( s ) \begin{aligned} \Rightarrow Y(s) &=CZ(s)+DU(s)\\ &=C(sI-A)^{-1}BU(s)+DU(s) \end{aligned} Y(s)=CZ(s)+DU(s)=C(sIA)1BU(s)+DU(s)
则传递函数

G ( s ) = Y ( s ) U ( s ) = C ( s I − A ) − 1 B + D G(s)=\frac{Y(s)}{U(s)}=C(sI-A)^{-1}B+D G(s)=U(s)Y(s)=C(sIA)1B+D

s I − A = [ s 0 0 s ] − [ 0 1 − k m − B m ] = [ s − 1 k m s + B m ] sI-A= \begin{bmatrix}s &0 \\ 0&s\end{bmatrix}- \begin{bmatrix}0&1\\-\frac{k}{m}&-\frac{B}{m}\end{bmatrix}= \begin{bmatrix}s&-1\\\frac{k}{m}&s+\frac{B}{m}\end{bmatrix} sIA=[s00s][0mk1mB]=[smk1s+mB]

   A − 1 = A ∗ ∣ A ∣ , A ∗ A^{-1}=\frac{A^*}{|A|},A^* A1=AA,A伴随矩阵(对角互换,反对角取相反数), ∣ A ∣ |A| A行列式

( s I − A ) − 1 = ( s I − A ) ∗ ∣ s I − A ∣ = [ s + B m 1 − k m s ] s ( s + B m ) − ( − 1 ) ( k m ) = [ s + B m 1 − k m s ] s 2 + B m s + k m \begin{aligned}(sI-A)^{-1} &=\frac{(sI-A)^{*}}{|sI-A|}\\ &=\frac{\begin{bmatrix} s+ \frac{B}{m}&1 \\ -\frac{k}{m} &s \end{bmatrix}} {s(s+ \frac{B}{m})-(-1)(\frac{k}{m})}\\ &=\frac{\begin{bmatrix}s+ \frac{B}{m}&1 \\-\frac{k}{m} &s \end{bmatrix}}{s^2+ \frac{B}{m}s+\frac{k}{m}} \end{aligned} (sIA)1=sIA(sIA)=s(s+mB)(1)(mk)[s+mBmk1s]=s2+mBs+mk[s+mBmk1s]

C ( s I − A ) − 1 = [ 1 0 ] [ s + B m 1 − k m s ] s 2 + B m s + k m = [ s + B m 1 ] s 2 + B m s + k m \begin{aligned}C(sI-A)^{-1}&= \begin{bmatrix}1 &0\end{bmatrix}\frac{\begin{bmatrix}s+ \frac{B}{m}&1 \\-\frac{k}{m} &s\end{bmatrix}}{s^2+ \frac{B}{m}s+\frac{k}{m}}\\ &=\frac{ \begin{bmatrix}s+ \frac{B}{m}&1\end{bmatrix}} {s^2+ \frac{B}{m}s+\frac{k}{m}} \end{aligned} C(sIA)1=[10]s2+mBs+mk[s+mBmk1s]=s2+mBs+mk[s+mB1]

C ( s I − A ) − 1 B + D = [ s + B m 1 ] s 2 + B m s + k m [ 0 1 m ] + 0 = 1 m s 2 + B m s + k m = 1 m s 2 + B s + k \begin{aligned}C(sI-A)^{-1}B+D&=\frac{\begin{bmatrix}s+ \frac{B}{m}&1\end{bmatrix}}{s^2+ \frac{B}{m}s+\frac{k}{m}} \begin{bmatrix}0\\\frac{1}{m}\end{bmatrix}+0\\&=\frac{\frac{1}{m}}{s^2+ \frac{B}{m}s+\frac{k}{m}}\\ &=\frac{1}{ms^2+ Bs+k}\end{aligned} C(sIA)1B+D=s2+mBs+mk[s+mB1][0m1]+0=s2+mBs+mkm1=ms2+Bs+k1

G ( s ) = 1 m s 2 + B s + k G(s)=\frac{1}{ms^2+ Bs+k} G(s)=ms2+Bs+k1
  显然,这两个传递函数是一样的。


∣ s I − A ∣ ∝ m s 2 + B s + k |sI-A| \propto ms^2+ Bs+k sIAms2+Bs+k

∣ s I − A ∣ = 0 ⇒ s |sI-A|=0 \Rightarrow s sIA=0s A A A的特征值
m s 2 + B s + k = 0 ⇒ s ms^2+ Bs+k=0 \Rightarrow s ms2+Bs+k=0s是极点
  经典控制系统中,极点决定系统的稳定性,特征值也决定稳定性?


练习:

在这里插入图片描述

输入: u u u
输出: y = i R 1 y=i_{R1} y=iR1
状态变量: V 1 , V 2 V_1,V_2 V1,V2

KCL: ∑ I = 0 \sum I=0 I=0
{ e 1 : i R 1 = i 1 + i R 2 e 2 : i R 2 = i 2 \begin{cases} e_1:i_{R1}=i_1+i_{R2}\\ e_2:i_{R2}=i_2 \end{cases} { e1:iR1=i1+iR2e2:iR2=i2

i R 1 = U − V 1 R 1 , i R 2 = V 1 − V 2 R 2 i 1 = C 1 V ˙ 1 , i 2 = C 2 V ˙ 2 i_{R1}=\frac{U-V_1}{R_1},\quad i_{R2}=\frac{V_1-V_2}{R_2}\\ i_1=C_1 \dot{V}_1, \quad i_2=C_2 \dot{V}_2 iR1=R1UV1,iR2=R2V1V2i1=C1V˙1,i2=C2V˙2


{ e 1 : U − V 1 R 1 = C 1 V ˙ 1 + V 1 − V 2 R 2 e 2 : V 1 − V 2 R 2 = C 2 V ˙ 2 \begin{cases} e_1:\frac{U-V_1}{R_1}=C_1 \dot{V}_1+\frac{V_1-V_2}{R_2}\\ e_2:\frac{V_1-V_2}{R_2}=C_2 \dot{V}_2 \end{cases} { e1:R1UV1=C1V˙1+R2V1V2e2:R2V1V2=C2V˙2


⇒ { e 1 : V ˙ 1 = 1 C 1 R 1 u − ( 1 C 1 R 1 + 1 C 1 R 2 ) V 1 + 1 C 1 R 2 V 2 e 2 : V ˙ 2 = 1 C 2 R 2 V 1 − 1 C 2 R 2 V 2 \Rightarrow \begin{cases} e_1:\dot{V}_1=\frac{1}{C_1R_1}u-(\frac{1}{C_1R_1}+\frac{1}{C_1R_2})V_1+\frac{1}{C_1R_2}V_2\\ e_2:\dot{V}_2=\frac{1}{C_2R_2}V_1-\frac{1}{C_2R_2}V_2 \end{cases} { e1:V˙1=C1R11u(C1R11+C1R21)V1+C1R21V2e2:V˙2=C2R21V1C2R21V2

y = i R 1 = 1 R 1 u − 1 R 1 V 1 y=i_{R1}=\frac{1}{R_1}u-\frac{1}{R_1}V_1 y=iR1=R11uR11V1


[ V ˙ 1 V ˙ 2 ] = [ − ( 1 C 1 R 1 + 1 C 1 R 2 ) V 1 1 C 1 R 2 1 C 2 R 2 − 1 C 2 R 2 ] [ V 1 V 2 ] + [ 1 C 1 R 1 0 ] [ u ] \begin{bmatrix} \dot{V}_1 \\\dot{V}_2 \end{bmatrix}= \begin{bmatrix}-(\frac{1}{C_1R_1}+\frac{1}{C_1R_2})V_1&\frac{1}{C_1R_2}\\\frac{1}{C_2R_2}&-\frac{1}{C_2R_2}\end{bmatrix} \begin{bmatrix}V_1\\V_2\end{bmatrix}+ \begin{bmatrix}\frac{1}{C_1R_1}\\0\end{bmatrix} \begin{bmatrix}u\end{bmatrix} [V˙1V˙2]=[(C1R11+C1R21)V1C2R21C1R21C2R21][V1V2]+[C1R110][u]

y = [ − 1 R 1 0 ] [ V 1 V 2 ] + [ 1 R 1 ] [ u ] y= \begin{bmatrix} -\frac{1}{R_1}&0\end{bmatrix} \begin{bmatrix} V_1\\V_2\end{bmatrix}+ \begin{bmatrix} \frac{1}{R_1}\end{bmatrix} \begin{bmatrix} u \end{bmatrix} y=[R110][V1V2]+[R11][u]


3.Phase Portrait 相图 相轨迹

Phase Portrait是一种分析微分方程解的方法,它对动态系统分析和控制理论非常重要,本篇将从控制的角度讲解。

x ˙ 1 = x 2 − 0.5 x 1 x ˙ 2 = sin ⁡ x 1 \dot{x}_1=x_2-0.5x_1\\ \dot{x}_2=\sin x_1 x˙1=x20.5x1x˙2=sinx1
是一个非线性系统,其相图是如下。

在这里插入图片描述

在这里插入图片描述

图中横轴为 x 1 x_1 x1,纵轴为 x 2 x_2 x2

Matlab 实现

[x1,x2] = meshgrid(-5:0.5:5,-5:0.5:5);
dx1 = x2 - 0.5*x1;
dx2=sin(x1);

figure
hold on
quiver(x1,x2,dx1,dx2)
hold off

1-D

x ˙ = f ( x ) = x 2 − 5 \dot{x}=f(x)=x^2-5 x˙=f(x)=x25

在这里插入图片描述

x ˙ = 0 ⇒ { x = x 01 x = x 02 \dot{x}=0 \Rightarrow \begin{cases}x=x_{01}\\x=x_{02}\end{cases} x˙=0{ x=x01x=x02

   x 01 x_{01} x01左侧, x ˙ > 0 , x \dot{x}>0,x x˙>0,x单调增; x 01 x_{01} x01右侧, x ˙ < 0 , x \dot{x}<0,x x˙<0,x单调减; x 01 x_{01} x01左右两侧都趋于 x 01 x_{01} x01, x 01 x_{01} x01是稳定点(平衡点)。

   x 02 x_{02} x02左侧, x ˙ < 0 , x \dot{x}<0,x x˙<0,x单调减; x 02 x_{02} x02右侧, x ˙ > 0 , x \dot{x}>0,x x˙>0,x单调增; x 02 x_{02} x02左右两侧都远离 x 02 x_{02} x02, x 02 x_{02} x02是不稳定点。

因此可以通过判断 x ˙ \dot{x} x˙的符号判断 x x x的变化趋势。


x ˙ = x − cos ⁡ x \dot{x}=x-\cos x x˙=xcosx

在这里插入图片描述

平衡点 x ˙ = 0 , x − cos ⁡ x = 0 \dot{x}=0,x-\cos x=0 x˙=0,xcosx=0
   x 0 x_{0} x0左侧, x ˙ < 0 , x \dot{x}<0,x x˙<0,x单调减; x 0 x_{0} x0右侧, x ˙ > 0 , x \dot{x}>0,x x˙>0,x单调增; x 0 x_{0} x0左右两侧都远离 x 0 x_{0} x0, x 0 x_{0} x0是不稳定点(非平衡点)。


2-D

state space
x ˙ = A x + B u , \dot{x}=Ax+Bu, x˙=Ax+Bu,

u = 0 u=0 u=0
d d t [ x 1 x 2 ] = [ a b c d ] [ x 1 x 2 ] \frac{d}{dt} \begin{bmatrix}x_1 \\x_2\end{bmatrix}= \begin{bmatrix}a&b \\c&d\end{bmatrix} \begin{bmatrix}x_1 \\x_2\end{bmatrix} dtd[x1x2]=[acbd][x1x2]

b = c = 0 b=c=0 b=c=0
x ˙ 1 = a x 1 , x ˙ 2 = d x 2 \dot{x}_1=ax_1,\dot{x}_2=dx_2 x˙1=ax1,x˙2=dx2

平衡点为
[ x 10 x 20 ] = [ 0 0 ] \begin{bmatrix} x_{10}\\x_{20}\end{bmatrix}= \begin{bmatrix}0 \\0\end{bmatrix} [x10x20]=[00]

case 1:source
a=d>0
x ˙ 1 = a x 1 , x ˙ 2 = d x 2 \dot{x}_1=ax_1,\dot{x}_2=dx_2 x˙1=ax1,x˙2=dx2

x 1 > 0 x_1>0 x1>0 x ˙ > 0 \dot{x}>0 x˙>0
x 2 > 0 x_2>0 x2>0 x ˙ > 0 \dot{x}>0 x˙>0

x 1 < 0 x_1<0 x1<0 x ˙ < 0 \dot{x}<0 x˙<0
x 2 < 0 x_2<0 x2<0 x ˙ < 0 \dot{x}<0 x˙<0
图中蓝色箭头,为发散点,即不稳定。

当a>b>0时,图中的绿色箭头,同样是不稳定。
在这里插入图片描述

case 2:saddle
a>0,d<0
x ˙ 1 = a x 1 , x ˙ 2 = d x 2 \dot{x}_1=ax_1,\dot{x}_2=dx_2 x˙1=ax1,x˙2=dx2

x 1 > 0 x_1>0 x1>0 x ˙ > 0 \dot{x}>0 x˙>0
x 2 > 0 x_2>0 x2>0 x ˙ < 0 \dot{x}<0 x˙<0

x 1 < 0 x_1<0 x1<0 x ˙ < 0 \dot{x}<0 x˙<0
x 2 < 0 x_2<0 x2<0 x ˙ > 0 \dot{x}>0 x˙>0

t → ∞ , x 2 → 0 , x 1 → ∞ t \to \infty,x_2 \to 0,x_1 \to \infty t,x20,x1
在这里插入图片描述

case 3: sink
a<0,d<0
x ˙ 1 = a x 1 , x ˙ 2 = d x 2 \dot{x}_1=ax_1,\dot{x}_2=dx_2 x˙1=ax1,x˙2=dx2

x 1 > 0 x_1>0 x1>0 x ˙ < 0 \dot{x}<0 x˙<0
x 2 > 0 x_2>0 x2>0 x ˙ < 0 \dot{x}<0 x˙<0

x 1 < 0 x_1<0 x1<0 x ˙ > 0 \dot{x}>0 x˙>0
x 2 < 0 x_2<0 x2<0 x ˙ > 0 \dot{x}>0 x˙>0

t → ∞ , x 1 , x 2 → 0 t \to \infty,x_1,x_2 \to 0 t,x1,x20
在这里插入图片描述


General Form:

X ˙ = A x \dot{X}=Ax X˙=Ax,令 x = P y y ˙ = Λ y , P = [ v 1 v 2 ] Λ = [ λ 1 0 0 λ 2 ] \begin{aligned}x &= Py\\\dot{y} &= \Lambda y \end{aligned}, \begin{aligned} P&=\begin{bmatrix}v_1&v_2\end{bmatrix}\\ \Lambda&=\begin{bmatrix} \lambda_1 & 0\\0 &\lambda_2 \end{bmatrix} \end{aligned} xy˙=Py=Λy,PΛ=[v1v2]=[λ100λ2]
λ 1 , λ 2 : \lambda_1,\lambda_2: λ1,λ2:特征值
v 1 , v 2 : v_1,v_2: v1,v2:特征向量

x ˙ = [ − 3 4 − 2 3 ] x \dot{x}=\begin{bmatrix} -3 &4 \\ -2 &3 \end{bmatrix}x x˙=[3243]x

  • λ \lambda λ
    ∣ λ I − A ∣ = 0 ⇒ λ 2 − 9 + 8 = 0 ⇒ λ = ± 1 \begin{aligned} &|\lambda I-A| = 0\\ &\Rightarrow \lambda^2 -9+8 = 0\\ &\Rightarrow \lambda = \pm 1 \end{aligned} λIA=0λ29+8=0λ=±1

  • v 1 , v 2 v_1,v_2 v1,v2
    [ λ I − A ] [ x 1 x 2 ] = 0 ⇒ v 1 = [ 1 1 ] , v 2 = [ 2 1 ] ⇒ P = [ 1 2 1 1 ] \begin{aligned} &\begin{bmatrix} \lambda I-A\end{bmatrix} \begin{bmatrix}x_1 \\x_2\end{bmatrix}=0\\ &\Rightarrow v_1=\begin{bmatrix}1 \\1\end{bmatrix}, v_2=\begin{bmatrix}2 \\1\end{bmatrix}\\ &\Rightarrow P=\begin{bmatrix}1&2 \\1&1\end{bmatrix}\end{aligned} [λIA][x1x2]=0v1=[11],v2=[21]P=[1121]

y ˙ = [ 1 0 0 − 1 ] y , x = [ 1 2 1 1 ] y \dot{y} = \begin{bmatrix} 1 & 0\\0 &-1\end{bmatrix}y,x = \begin{bmatrix} 1 & 2\\1 &1\end{bmatrix}y y˙=[1001]y,x=[1121]y

线性变换,变换至新的坐标系
a>0,d<0,saddle鞍点

在这里插入图片描述

x x x y y y性质相同,特征值 λ \lambda λ决定系统的性质(稳定性)


又例 x ˙ = [ 0 a − a 0 ] x , a > 0 \dot{x}= \begin{bmatrix} 0 & a\\-a &0\end{bmatrix} x,a>0 x˙=[0aa0]x,a>0

  • λ \lambda λ
    ∣ λ I − A ∣ = 0 ⇒ λ 2 = − a 2 ⇒ λ = ± a i |\lambda I-A|=0\\ \Rightarrow \lambda^2=-a^2\\ \Rightarrow\lambda =\pm ai λIA=0λ2=a2λ=±ai
  • v 1 , v 2 v_1,v_2 v1,v2
    [ λ I − A   ] x = 0 v 1 = [ 1 i ] , v 2 = [ 1 − i ] \left [ \lambda I-A\ \right ]x=0\\ v_1=\begin{bmatrix}1 &i\end{bmatrix}, v_2=\begin{bmatrix}1 &-i\end{bmatrix} [λIA ]x=0v1=[1i],v2=[1i]

y ˙ = Λ y = [ a i 0 0 − a i ] y \dot{y}=\Lambda y=\begin{bmatrix} ai &0 \\0 &-ai\end{bmatrix}y y˙=Λy=[ai00ai]y

⇒ y 1 = C 1 e a i t , y 2 = C 2 e − a i t \Rightarrow y_1=C_1e^{ait},y_2=C_2e^{-ait} y1=C1eait,y2=C2eait

x = [ x 1 x 2 ] = P y = [ 1 1 a i − a i ] [ C 1 e a i t C 2 e − a i t ] = [ C 1 e a i t + C 2 e − a i t a i C 1 e a i t − a i C 2 e − a i t ] = [ B 1 cos ⁡ a t + B 2 i sin ⁡ a t B 3 cos ⁡ i a t + B 4 sin ⁡ a t ] \begin{aligned} x &=\begin{bmatrix}x_1 \\x_2\end{bmatrix} =Py=\begin{bmatrix} 1&1 \\ ai &-ai\end{bmatrix} \begin{bmatrix}C_1e^{ait}\\C_2e^{-ait} \end{bmatrix}\\&= \begin{bmatrix}C_1e^{ait}+C_2e^{-ait}\\aiC_1e^{ait}-aiC_2e^{-ait}\end{bmatrix}\\&= \begin{bmatrix}B_1\cos at + B_2 i\sin at\\ B_3\cos iat + B_4 \sin at\end{bmatrix} \end{aligned} x=[x1x2]=Py=[1ai1ai][C1eaitC2eait]=[C1eait+C2eaitaiC1eaitaiC2eait]=[B1cosat+B2isinatB3cosiat+B4sinat]

( x 1 B 1 ) 2 + ( x 2 B 4 ) 2 = 1 \left ( \frac{x_1}{B_1} \right )^2 + \left ( \frac{x_2}{B_4} \right )^2=1 (B1x1)2+(B4x

  • 18
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值