1024! 末尾有多少个0?
1024的阶乘末尾有多少个0,这个问题只要理清思想就很好解了。
有多少个0取决于有多少个10相乘,即1024拆成小单元后有多少个10。
由于10不是素数,所以直接用10进行计算的话会有很多问题,于是将10分解。 10可以分解成2*5,2和5都是素数,由于每2个相邻的数中一定包含2,所以只要计算出有多少个5就可以了(2会在5之后及时出现)。
于是解法如下:
是5的倍数的数有: 1024 / 5 = 204个
是25的倍数的数有:1024 / 25 = 40个
是125的倍数的数有:1024 / 125 = 8个
是625的倍数的数有:1024 / 625 = 1个
所以1024! 中总共有204+40+8+1=253个因子5。
即1024!后有253个0