数据结构·排序算法大比拼

一、复杂度与稳定性

排序复杂度与稳定性

1、时间复杂度

1.希尔排序

《数据结构(C语言版)》— 严蔚敏希尔排序复杂度描述_1《数据结构-用面相对象方法与C++描述》— 殷人昆希尔排序复杂度描述_2
希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在很多书中给出的希尔排序的时间复杂度都不固定。对于本文给出的希尔排序代码,由于gap是按照Knuth提出的方式取值的,而且Knuth进行了大量的试验统计,可以按照O(n1.25)—O(1.6 x n1.25)来算

2、堆排序、归并排序、快速排序
  • 堆排序:直接使用二叉堆(完全二叉树)的数据结构,通过数组来表示和操作。
  • 归并排序:虽然不直接使用二叉树,但其递归过程可以被看作是一个递归树。
  • 快速排序:同样不直接使用二叉树,但其递归过程也可以被看作是一个递归树。
    这三种排序算法都采用了分治法的思想,但只有堆排序直接使用了二叉树(二叉堆)的数据结构。归并排序和快速排序的递归过程可以被抽象为递归树,但它们的实际实现并不依赖于显式的二叉树结构。
    一般情况下这三种排序的时间复杂度都为二叉树的深度。
    对于快速排序存在最坏情形,为正序或逆序排列,二叉树画出来应该是一棵斜树,并且需要经过n-1次递归调用才能完成,且第i次划分需要经过n‐i次关键字的比较才能找到第i个记录,也就是枢轴的位置,所以最终的时间复杂度应该O(n2)、空间复杂度为O(n)
3、稳定性

在排序算法中,稳定性指的是相等元素的相对顺序是否在排序后保持不变。简单来说,如果排序前两个相等的元素在数组中的相对位置是固定的,排序后它们的位置依然不变,那么这种算法就是稳定排序;如果排序后位置可能会变化,那就是不稳定排序。
稳定性描述

堆排序、快速排序、希尔排序、直接选择排序是不稳定的排序算法,而基数排序、冒泡排序、直接插入排序、折半插入排序、归并排序是稳定的排序算法。

1.冒泡排序
**冒泡排序就是把小的元素往前调或者把大的元素往后调。**比较是相邻的两个元素比较,**交换也发生在这两个元素之间。**所以,如果两个元素相等,不会发生交换;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
2.选择排序
**选择排序是给每个位置选择当前元素最小的,**比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n - 1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。
举个例子,序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。
选择排序

3.插入排序
插入排序是在一个已经有序的小序列的基础上一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,就是第一个元素。比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。
4.快速排序
选择第一个元素作为基准值。使用两个指针 i 和 j,分别从数组的两端向中间移动。
i 从左向右移动,直到找到一个大于基准值的元素。j 从右向左移动,直到找到一个小于基准值的元素。交换 i 和 j 位置的元素,继续移动指针,直到 i 和 j 交叉。
最后将基准值与 i 位置的元素交换。在数据交换时很容易出现不稳定的情况。
举个例子,比如序列为6 7 10 7 1 3 7 3 9 4 2,取6为key值进行第一趟交换后则出现不稳定,所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j] 交换的时刻。
快速排序

5.归并排序
归并排序是把序列递归地分成短序列,递归出口是短序列只有1个元素(认为直接有序)或者2个序列(1次比较和交换),然后把各个有序的段序列合并成一个有序的长序列,不断合并直到原序列全部排好序。可以发现,在1个或2个元素时,1个元素不会交换,2个元素如果大小相等也没有人故意交换,这不会破坏稳定性。那么,在短的有序序列合并的过程中,稳定是是否受到破坏?没有,合并过程中我们可以保证如果两个当前元素相等时,我们把处在前面的序列的元素保存在结果序列的前面,这样就保证了稳定性。所以,归并排序也是稳定的排序算法。
6.希尔排序(shell)
希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以希尔排序是不稳定的。
8.堆排序
我们知道堆的结构是节点i的孩子为2 * i和2 * i + 1节点,大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点。在一个长为n 的序列,堆排序的过程是从第n / 2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n / 2 - 1, n / 2 - 2, … 1这些个父节点选择元素时,就会破坏稳定性。有可能第n / 2个父节点交换把后面一个元素交换过去了,而第n / 2 - 1个父节点把后面一个相同的元素没 有交换,那么这2个相同的元素之间的稳定性就被破坏了。所以,堆排序不是稳定的排序算法。

二、数据敏感与算法分类

算法分类

1、归并排序、选择排序、堆排序

归并排序、选择排序和堆排序对数据不敏感,主要是因为它们的时间复杂度在不同情况下保持相对稳定,不受输入数据的初始状态(如是否已经部分排序或完全逆序)的影响。
冒泡排序、快速排序、插入排序和希尔排序对数据的初始状态较为敏感,这意味着它们的时间复杂度会因输入数据的不同而变化。以下是每种排序算法的具体分析:

2、 冒泡排序、快速排序、插入排序、希尔排序

1.冒泡排序
  • 最好情况:如果数组已经排序,冒泡排序只需要一次遍历即可完成,时间复杂度为 O(n)。
  • 最坏情况:如果数组完全逆序,每次遍历都需要进行 n-1 次比较和交换,时间复杂度为 O(n^2)。
2. 快速排序
  • 最好情况:当每次选择的基准值都能将数组均匀分成两部分时,时间复杂度为 O(n* logn)。
  • 最坏情况:当每次选择的基准值都是最小或最大值时,时间复杂度为 O(n2)。这种情况通常发生在已经排序或逆序的数组上。
3. 插入排序
  • 最好情况:如果数组已经排序,插入排序只需要一次遍历即可完成,时间复杂度为 O(n)。
  • 最坏情况:如果数组完全逆序,每次插入操作都需要进行 n-1 次比较和移动,时间复杂度为 O(n2)。
4. 希尔排序
  • 最好情况:如果选择合适的增量序列,希尔排序的时间复杂度可以接近 O(n log n)。
  • 最坏情况:如果选择不合适的增量序列,希尔排序的时间复杂度可能退化为 O(n^2)。
    这些排序算法的时间复杂度会因输入数据的初始状态而变化,因此对数据较为敏感。选择合适的排序算法需要根据具体的应用需求和数据特性来决定。

三、总结

排序类算法
排序比较

四、代码合集

sort.c

include"sort.h"

//交换
void Swap(int* a, int* b)
{
	int tmp = *a;
	*a = *b;
	*b = tmp;
}
// 插入排序 
void InsertSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++)
	{
		int end = i;
		int tmp = a[end + 1];
		while (end >= 0)
		{
			if (a[end] > tmp)
			{
				a[end + 1] = a[end];
				end--;
			}
			else break;
		}
		a[end + 1] = tmp;
	}
}

// 希尔排序
void ShellSort(int* a, int n)
{
	int gap = n;
	while (gap > 1)
	{
		gap = gap / 2;
		for (int i = 0; i < n - gap; i++)
		{
			int end = i;
			int tmp = a[end + gap];
			while (end >= 0)
			{
				if (a[end] > tmp)
				{
					a[end + gap] = a[end];
					end -= gap;
				}
				else break;
			}
			a[end + gap] = tmp;
		}
	}
}
// 简单选择排序
void SelectSort(int* a, int n)
{
	int head = 0;
	int end = n - 1;
	while (head < end)
	{
		int mini = head;
		int maxi = end;
		for (int i = head; i <= end; i++)
		{
			if (a[i] > a[maxi])
				maxi = i;
			if (a[i] < a[mini])
				mini = i;
		}
		Swap(&a[head], &a[mini]);
		if (maxi == head)
			maxi = mini;
		Swap(&a[end], &a[maxi]);
		head++;
		end--;
	}
}


// 堆排序
void AdjustDwon(int* a, int n, int root)
{
	int child = root * 2 + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child] < a[child + 1])
			child++;
		if (a[child] > a[root])
		{
			Swap(&a[child], &a[root]);
			root = child;
			child = root * 2 + 1;
		}
		else break;
	}
}
void HeapSort(int* a, int n)
{
	for (int i = (n - 2) / 2; i >= 0; i--)
	{
		AdjustDwon(a, n, i);
	}
	for (int i = n - 1; i > 0; i--)
	{
		Swap(&a[0], &a[i]);
		AdjustDwon(a, i, 0);
	}
}

// 冒泡排序
void BubbleSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++)
	{
		for (int j = 0; j < n - i - 1; j++) 
		{
			if (a[j + 1] < a[j])
				Swap(&a[j + 1], &a[j]);
		}
	}
}
// 快速排序递归实现
int GetMidIndex(int* a, int left, int right)
{
	if (right - left == 0)
		return left;
	int mid = left + (rand() % (right - left));
	if (a[left] < a[mid])
	{
		if (a[mid] < a[right])
			return mid;
		else if (a[right] > a[left])
			return right;
		else return left;
	}
	//a[left] > a[mid]
	else
	{
		if (a[left] < a[right])
			return left;
		else if (a[mid] > a[right])
			return mid;
		else return right;
	}
}
// 快速排序hoare版本
int PartSort1(int* a, int left, int right)
{
	int keyi = GetMidIndex(a,left,right);
	Swap(&a[left], &a[keyi]);
	keyi = left;
	while (left < right)
	{
		while (left < right && a[right] >= a[keyi])
		{
			right--;
		}
		while (left < right && a[left] <= a[keyi])
		{
			left++;
		}
		Swap(&a[left], &a[right]);
	}
	Swap(&a[keyi], &a[left]);
	return left;
}
// 快速排序挖坑法
int PartSort2(int* a, int left, int right)
{

	int hole = GetMidIndex(a, left, right);
	Swap(&a[hole], &a[left]);
	int key = a[left];

	hole = left;
	while (left < right)
	{
		while (left < right && a[right] >= key)
		{
			right--;
		}
		Swap(&a[hole], &a[right]);
		hole = right;
		while (left < right && a[left] <= key)
		{
			left++;
		}
		Swap(&a[hole], &a[left]);
		hole = left;
	}
	a[hole] = key;
	return hole;
}
// 快速排序前后指针法
int PartSort3(int* a, int left, int right)
{
	int prev = GetMidIndex(a, left, right);
	Swap(&a[left], &a[prev]);
	prev = left;
	int cur = prev + 1;
	int key = a[left];
	while (cur <= right)
	{
		if (a[cur] < key && prev++ != cur)
		{
			Swap(&a[cur], &a[prev]);
		}
		cur++;
	}
	Swap(&a[prev], &a[left]);
	return prev;
}
//快速排序三路划分法
//int PartSort4(int* a, int left, int right);

void QuickSort_v1(int* a, int left, int right)
{
	if (left >= right)
		return;
	int key = PartSort1(a, left, right);
	QuickSort_v1(a, left, key - 1);
	QuickSort_v1(a, key + 1, right);
}
void QuickSort_v2(int* a, int left, int right)
{
	if (left >= right)
		return;
	int key = PartSort2(a, left, right);
	QuickSort_v2(a, left, key - 1);
	QuickSort_v2(a, key + 1, right);
}
void QuickSort_v3(int* a, int left, int right)
{
	if (left >= right)
		return;
	int key = PartSort3(a, left, right);
	QuickSort_v3(a, left, key - 1);
	QuickSort_v3(a, key + 1, right);
}
//快速排序三路划分法
void QuickSort_v4(int* a, int left, int right)
{
	if (left >= right)
		return;

	int begin = left;
	int end = right;
	int cur = left + 1;

	int key = GetMidIndex(a, left, right);
	Swap(&a[left], &a[key]);
	key = a[left];

	while (cur <= right)
	{
		if (a[cur] < key)
		{
			Swap(&a[cur], &a[left]);
			cur++;
			left++;
		}
		else if (a[cur] > key)
		{
			Swap(&a[cur], &a[right]);
			right--;
		}
		else cur++;
	}
	QuickSort_v4(a, begin, left - 1);
	QuickSort_v4(a, right + 1, end);
}
// 快速排序 非递归实现
void QuickSortNonR(int* a, int left, int right)
{
	Stack St;
	StackInit(&St);
	StackPush(&St, right);
	StackPush(&St, left);
	while (!StackEmpty(&St))
	{
		int begin = StackTop(&St);
		StackPop(&St);
		int end = StackTop(&St);
		StackPop(&St);
		int mid = PartSort1(a, begin, end);
		if (mid < end - 1)
		{
			StackPush(&St, end);
			StackPush(&St, mid + 1);
		}
		if (mid > begin + 1)
		{
			StackPush(&St, mid - 1);
			StackPush(&St, begin);
		}
	}
	StackDestroy(&St);
}

// 归并排序递归实现
void MergeSort(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);
	_MergeSort(a, tmp, 0, n - 1);
	free(tmp);
}
void _MergeSort(int* a, int* tmp, int begin, int end)
{
	if (begin >= end)
		return;
	int mid = (end + begin) / 2;

	_MergeSort(a, tmp, begin, mid );
	_MergeSort(a, tmp, mid + 1, end);

	int begin1 = begin, end1 = mid;
	int begin2 = mid + 1, end2 = end;
	int i = begin;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] > a[begin2])
		{
			tmp[i++] = a[begin2++];
		}
		else
		{
			tmp[i++] = a[begin1++];
		}
	}
	while (begin1 <= end1)
	{
		tmp[i++] = a[begin1++];
	}
	while (begin2 <= end2)
	{
		tmp[i++] = a[begin2++];
	}
	memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}

// 归并排序非递归实现
void MergeSortNonR(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);
	int gap = 1;

	while (gap < n)
	{
		int j = 0;
		for (int i = 0; i < n; i += 2 * gap)
		{
			int begin1 = i, end1 = begin1 + gap - 1;
			int begin2 = i + gap, end2 = i + 2 * gap - 1;
			if (begin2 > n - 1 || end1 > n - 1)
				break;
			if (end2 >= n)
			{
				end2 = n - 1;
			}
			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] > a[begin2])
				{
					tmp[j++] = a[begin2++];
				}
				else
				{
					tmp[j++] = a[begin1++];
				}
			}
			while (begin1 <= end1)
			{
				tmp[j++] = a[begin1++];
			}
			while (begin2 <= end2)
			{
				tmp[j++] = a[begin2++];
			}
			memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));
		}
		gap *= 2;
	}
	free(tmp);
}

// 计数排序
void CountSort(int* a, int n)
{
	int max = a[0];
	int min = a[0];
	for (int i = 0; i < n; i++)
	{
		if (a[i] > max)
			max = a[i];
		if (a[i] < min)
			min = a[i];
	}
	int* tmp = (int*)malloc(sizeof(int) * (max - min + 1));
	memset(tmp, 0, sizeof(int) * (max - min + 1));
	for (int i = 0; i < n; i++)
	{
		tmp[a[i] - min] ++;
	}
	int j = 0;
	for (int i = 0; i < max - min + 1; i++)
	{
		while (tmp[i] != 0)
		{
			a[j] = i + min;
			j++;
			tmp[i]--;
		}
	}
	free(tmp);
}

sort.h

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<time.h>

#include"Stack.h"

//#include"Stack.h"

//交换
void Swap(int* a, int* b);

// 插入排序
void InsertSort(int* a, int n);

// 希尔排序
void ShellSort(int* a, int n);

// 选择排序
void SelectSort(int* a, int n);


// 堆排序
void AdjustDwon(int* a, int n, int root);
void HeapSort(int* a, int n);

// 冒泡排序
void BubbleSort(int* a, int n);

// 快速排序递归实现
//三数取中
int GetMidIndex(int* a, int left, int right);
// 快速排序hoare版本
int PartSort1(int* a, int left, int right);
// 快速排序挖坑法
int PartSort2(int* a, int left, int right);
// 快速排序前后指针法
int PartSort3(int* a, int left, int right);
//快速排序三路划分法
//int PartSort4(int* a, int left, int right);

void QuickSort_v1(int* a, int left, int right);
void QuickSort_v2(int* a, int left, int right);
void QuickSort_v3(int* a, int left, int right);
//快速排序三路划分法
void QuickSort_v4(int* a, int left, int right);
// 快速排序 非递归实现
void QuickSortNonR(int* a, int left, int right);

// 归并排序递归实现
void MergeSort(int* a, int n);
void _MergeSort(int* a, int* tmp, int begin, int end);

// 归并排序非递归实现
void MergeSortNonR(int* a, int n);

// 计数排序
void CountSort(int* a, int n);

void Arrayprint(int* a, int n);

stack.c

#include"Stack.h"
// 初始化栈 
void StackInit(Stack* ps)
{
	ps->a = NULL;
	ps->capacity = 0;
	ps->top = 0;
}
// 入栈 
void StackPush(Stack* ps, STDataType data)
{
	if (ps->capacity == ps->top)
	{
		int Newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
		STDataType* tmp = (STDataType*)realloc(ps->a, Newcapacity * sizeof(STDataType));
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		ps->a = tmp;
		ps->capacity = Newcapacity;
	}
	ps->a[ps->top] = data;
	ps->top++;
}
// 出栈 
void StackPop(Stack* ps)
{
	assert(ps);
	assert(!StackEmpty(ps));

	ps->top--;
}
// 获取栈顶元素 
STDataType StackTop(Stack* ps)
{
	assert(ps);
	assert(!StackEmpty(ps));
	return ps->a[ps->top - 1];
}
// 获取栈中有效元素个数 
int StackSize(Stack* ps)
{
	assert(ps);
	return ps->top;
}
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 
int StackEmpty(Stack* ps)
{
	assert(ps);
	return ps->top == 0;
}
// 销毁栈 
void StackDestroy(Stack* ps)
{
	assert(ps);

	free(ps->a);
	ps->a = NULL;
	ps->top = ps->capacity = 0;
}

stack.h

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>

// 支持动态增长的栈
typedef int STDataType;
typedef struct Stack
{
	STDataType* a;
	int top;		// 栈顶
	int capacity;  // 容量 
}Stack;
// 初始化栈 
void StackInit(Stack* ps);
// 入栈 
void StackPush(Stack* ps, STDataType data);
// 出栈 
void StackPop(Stack* ps);
// 获取栈顶元素 
STDataType StackTop(Stack* ps);
// 获取栈中有效元素个数 
int StackSize(Stack* ps);
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 
int StackEmpty(Stack* ps);
// 销毁栈 
void StackDestroy(Stack* ps);
### 回答1: 学习数据结构算法通常需要以下几步: 1. 了解基本的编程知识,包括变量、条件语句、循环、函数等。 2. 学习基本的数据结构,如数组、链表、栈、队列、树等。 3. 学习常见的算法,如排序、搜索、图论等。 4. 多做题,熟练掌握数据结构算法的应用。 5. 学习进阶的数据结构算法,如哈希表、并查集、最短路等。 可以通过读书、看视频、做题等方式来学习数据结构算法。有很多优秀的书籍和在线课程可以帮助你学习。 ### 回答2: 学习数据结构算法需要以下几个步骤: 1. 了解基本知识:首先,要了解数据结构算法的概念、特点以及基本分类。了解常见的数据结构,如数组、链表、栈、队列、树、图等以及它们的特点和应用场景。同时,熟悉常见的算法,如排序、查找、递归、动态规划等,并能够理解它们的原理和时间复杂度。 2. 学习实际应用:对于每种数据结构算法,了解它们的实际应用场景和解决问题的方法。通过实际案例来学习,可以更好地理解和记忆。 3. 多实践:理论知识的学习只是第一步,要真正掌握数据结构算法,需要进行大量的练习和实践。可以通过LeetCode、牛客网等网站进行算法题目的练习,尽量多遇到不同类型的题目,提高解题的思维灵活性和效率。 4. 阅读相关教材和书籍:有关数据结构算法的经典书籍有很多,如《算法导论》、《数据结构算法分析:C语言描述》等。通过阅读书籍可以更深入地了解数据结构算法的背后原理和更高级的内容。 5. 参加算法竞赛或项目实践:参加算法竞赛可以提高算法的设计和编码能力,还可以通过与他人的交流和比拼来进一步提升自己。同时,参加项目实践可以将所学的数据结构算法应用到实际项目中,加深对这些知识的理解和掌握。 总之,学习数据结构算法需要结合理论与实践,不仅要掌握基本概念和知识,还需要不断练习和实践,才能真正掌握和应用它们。 ### 回答3: 学习数据结构算法,首先要建立一种系统的学习方法和计划。以下是一些建议: 1.了解基础知识:学习数据结构算法的前提是理解计算机的基础原理和操作系统的工作原理。这包括计算机内存、数据存储和读写、程序执行过程等基本概念。 2.选择合适的教材或资源:寻找一本好的教材或者在线资源,如教科书、编程网站等。建议选择结合理论和实践的资料,尽量包含编程实例和习题,以便动手实践和巩固所学知识。 3.学习基本数据结构:了解基本数据结构,如数组、链表、栈、队列、树等。理解它们的特点、应用场景和操作,能够利用编程语言实现和操作这些数据结构。 4.掌握常见算法:学习并掌握常见的算法,如查找、排序、递归、动态规划等。了解它们的思想、时间复杂度和空间复杂度,并能够使用适当的算法解决实际问题。 5.进行实践和练习:通过练习编写代码、解决问题来巩固所学知识。可以使用在线编程平台或者自己搭建的编程环境进行实践和调试。 6.参与项目和实际应用:将所学的数据结构算法应用到实际项目中,从中获取更多的实践经验。参与开源项目、参加编程竞赛等也能够激发学习的兴趣和动力。 7.持续学习和拓展:数据结构算法是一个广阔的领域,持续学习是必要的。可以阅读相关的学术论文、参加学术会议、关注计算机科学领域的最新动态,以保持对该领域的掌握和理解。 总结来说,学习数据结构算法需要坚持不懈的实践与思考。只有通过不断地练习和不断地思考,才能真正掌握和理解数据结构算法的精髓。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值