【待深入】莫队算法

 昨天问别人莫队算法, 然后今天才知道他说的那个好像根本就不叫莫队算法, 只是因为分块排序之后扫一遍的方法也是n * sqrt(n), 很好写但是可以用来做所有可以用莫队做的题吧。。。。

比如说这道 莫队出的小z 的袜子,,这样写就40行诶。。建一个那种的肯定又要上百了。

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <cmath>
    #define MAXN 50005
    using namespace std;
    struct ask{
        int l, r, pos;long long zi, mu;
    }d[MAXN], ans[MAXN];
    int n, m, a[MAXN], kuai, num[MAXN];
    int cmp(ask a, ask b){
        if((a.l / kuai == (b.l / kuai)))return a.r < b.r;
        return (a.l / kuai) < (b.l / kuai);
    }
    long long gcd(long long a, long long b){
        if(!a)return b; return gcd(b % a, a);
    }
    int main()
    {
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= n; i ++)scanf("%d", &a[i]);
        for(int i = 1; i <= m; i ++){scanf("%d%d", &d[i].l, &d[i].r);d[i].pos = i; ans[i].mu = (long long)(d[i].r - d[i].l + 1) * (d[i].r - d[i].l) / 2;}
        kuai = sqrt(m);
        sort(d + 1, d + m + 1, cmp);
        int l = 1, r = 0; long long tmp = 0;
        for(int i = 1; i <= m; i ++){
            while(r < d[i].r){r ++; tmp += num[a[r]]; num[a[r]] ++;}
            while(r > d[i].r){num[a[r]] --; tmp -= num[a[r]]; r --;}
            while(l < d[i].l){num[a[l]] --; tmp -= num[a[l]]; l ++;}
            while(l > d[i].l){l --; tmp += num[a[l]]; num[a[l]] ++;}
            ans[d[i].pos].zi = tmp;
        }
        for(int i = 1; i <= m; i ++){
            long long gg = gcd(ans[i].zi, ans[i].mu);
            printf("%lld/%lld\n", ans[i].zi / gg, ans[i].mu / gg);
        }
        return 0;
    }

还有poj 3241 的这道题,

为了练习我 “借鉴” 别人敲了一个莫队,  然后就调不出来了。。。

没错 借鉴 是因为我了解地不够, 以后一定要再深入地了解它。

先搬一个别人的代码吧。。。和下面这个是一个人的   莫队算法

/*
* Author:  vawait
* Created Time:  2014/3/4 16:08:29
* File Name: test.cpp
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<stack>
#include<ctime>
using namespace std;
#define rep(i, a, b) for (int i = (a); i <= (b); ++i)
#define red(i, a, b) for (int i = (a); i >= (b); --i)
#define clr( x , y ) memset(x,y,sizeof(x))
#define mp make_pair
#define pb push_back
#define sqr(x) ((x) * (x))
typedef long long lint;
const int maxn = 10010;
int n , m , t , x , f[maxn] , c[maxn];
 
struct bit
{
    int t[10100] , n;
    void cl() { clr( t, 0 ); }
    void add(int x,int y) {
        for ( ; x; x -= x & (-x) ) if( c[y] < c[t[x]] ) t[x] = y;
    }
    int ask(int x) {
        int s = 0;
        for ( ; x <= 10000; x += x & (-x) ) if ( c[s] > c[t[x]] ) s = t[x];
        return s;
    }
} T;
 
struct nodd
{
    int x , y , n;
} a[maxn] , d[maxn] , b[4*maxn];
 
bool cmp(nodd a,nodd b) { return a.x == b.x ? a.y < b.y : a.x < b.x; }
 
bool cmp2(nodd a,nodd b) { return a.n < b.n; }
 
void add(int x,int y,int d)
{
    b[++t].x = x; b[t].y = y;
    b[t].n = d;
}
 
void init()
{
    rep(i,1,n) scanf("%d%d",&a[i].x,&a[i].y) , a[i].n = i;
    t = 0;
    rep(k,1,4) {
        if ( k == 2 || k == 4 ) rep(i,1,n) swap(a[i].x,a[i].y);
        if ( k == 3 ) rep(i,1,n) a[i].x = -a[i].x;
        sort( a + 1 , a + 1 + n , cmp );
        rep(i,1,n) d[i].x = a[i].y - a[i].x , d[i].y = i;
        rep(i,1,n) c[i] = a[i].x + a[i].y;
        c[0] = 2000000000;
        sort( d + 1 , d + 1 + n , cmp );
        rep(i,1,n) f[d[i].y] = i;
        T.cl();
        red(i,n,1) {
            if ( x = T.ask(f[i]) ) add( a[i].n , a[x].n , abs( a[i].x - a[x].x ) + abs( a[i].y - a[x].y ) );
            T.add(f[i],i);
        }
    }
}
 
int find(int t) { return f[t] == t ? t : f[t] = find(f[t]); }
 
void work()
{
    int s = n;
    rep(i,1,n) f[i] = i;
    sort( b + 1 , b + 1 + t , cmp2 );
    rep(i,1,t) if ( find(b[i].x) != find(b[i].y) ) {
        f[find(b[i].x)] = find(b[i].y);
        s --;
        if ( s == m ) cout << b[i].n << endl;
    }
}
 
int main()
{
    while ( cin >> n >> m ) {
        init();
        work();
    }
    return 0;
}



//下面是我认为介绍的比较易懂的一篇

可以证明每一个顶点在最小生成树中在这45度的范围内至多仅有一条边与之相连,也就是如果以一个点为原点,那么上面分成的八个区域里面最多和每个区域连一条边。

首先只考虑R1区间的。把每个坐标都按x为第一关键字,y为第二关键字排序。从后往前处理,那么能保证处理到第i个点时,比Xi大的点都已经处理过了。也就是以第i点为原点时,其他点只在R1,、R2、R3、R4区间。现在找R1区间的点,通过位移使得i点在原点,那么R1区间的点必然满足Xj<Yj,因为i点为原点,所以在原坐标中满足Xj-Xi>Yj-Yi,转移一下得Yj-Xj<Yi-Xi。也就是在Xj>Xi并且满足Yj-Xj<Yi-Xi中找一个离i点最近的点。因为Xi<Xj,Yi<Yj,所以曼哈顿距离为(Xj+Yj)-(Xi+Yi),后面的为常数,只考虑前面的即可。

总的算法是先排序,按x为第一关键字,y为第二关键字。然后以每个点的Yi-Xi的值得出排名F[i]。按排序的顺序倒序处理i点,每次找F[j]比F[i]大的并且是Xj+Yj最小的点连边。这个可以以F[i]作为标号,Xi+Yi作为值,用线段树或者树状数组维护即可。

考虑到对称性所以只需要处理4个区域,每个区域可以通过对称转移到R1,所以循环四次每次只是处理坐标,算法还是一样。

这就是莫队算法了,如果知道区间[l,r]的信息,可以O(1)得到[l+1,r]的信息,那么其转移复杂度就相当于曼哈顿距离。可以找出曼哈顿最小生成树然后按照连边处理信息。

最后是我的代码,只有莫队算法处理边还没有求最小生成树的:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值