c4d线性切割如何使用?

1,置入一个圆柱。把圆柱C掉成可编辑状态;

2,调出线性切割工具。在点,线,面的三种模式下,都可以调出“线性切割”工具,实际运用,选中一种模式下即可。

3,正确选择视图模式进行切割。要在正视图模式下进行切割,其他视图可能会切出不正确的角度或形状;

4,勾选“仅可见”的运用。仅切割能看到的地方,看不到的地方不切割;

5,取消勾选“仅可见”的运用。切刀划过的地方,全部切割;

6,切出异形。用“线性切割”切出波浪形,本实例切圆柱,要取消勾选仅可见,在正视图的模式下切割。正视图模式下切割。把模型放大,取消勾选仅可见;去除多余部分。点模式下,框选要删除的一些点,删除即可。

### 回答1: 设需要切割的 9m 长棒材数量为 x,那么根据题目可得: - 3.1m 棒料需要切割的数量为 a - 2.5m 棒料需要切割的数量为 b - 1.7m 棒料需要切割的数量为 c 则有以下约束条件: - 3.1a + 2.5b + 1.7c <= 9x,即切割后的长度不能超过原材料的长度 - a <= 200,即 3.1m 棒料的数量不能超过 200 根 - b <= 100,即 2.5m 棒料的数量不能超过 100 根 - c <= 300,即 1.7m 棒料的数量不能超过 300 根 - a, b, c >= 0,即棒料数量不能为负数 此外,我们需要最小化废料的数量。设切割后的废料长度为 d,则可得出目标函数: - minimize d 综上所述,线性规划模型如下: - minimize d - subject to: - 3.1a + 2.5b + 1.7c <= 9x - a <= 200 - b <= 100 - c <= 300 - a, b, c, x >= 0 ### 回答2: 要使废料最少,我们需要在下料过程中尽可能地减少棒料的浪费。根据给定的数据,我们需要考虑如何将200根长度为3.1m的棒料,100根长度为2.5m的棒料和300根长度为1.7m的棒料从9m长的棒材中切割出来。 假设下料的方式是从9m长的棒材中切割出长度为3.1m的棒料x根,长度为2.5m的棒料y根,长度为1.7m的棒料z根。 由于一根棒料只能切割成一段长度,所以我们有以下约束条件: 3.1x + 2.5y + 1.7z ≤ 9 (总长度不超过9m) x ≤ 200 (长度为3.1m的棒料最多可有200根) y ≤ 100 (长度为2.5m的棒料最多可有100根) z ≤ 300 (长度为1.7m的棒料最多可有300根) x, y, z ≥ 0 (棒料的数量不能为负数) 我们的目标是最小化废料的数量,即最小化棒材的剩余长度。定义剩余长度为r,则有: r = 9 - (3.1x + 2.5y + 1.7z) 将以上条件整理为线性规划模型如下: 目标函数:最小化 r = 9 - (3.1x + 2.5y + 1.7z) 约束条件:3.1x + 2.5y + 1.7z ≤ 9 x ≤ 200 y ≤ 100 z ≤ 300 x, y, z ≥ 0 通过求解上述线性规划模型,可以得出最佳的下料方案,使得废料最少。 ### 回答3: 首先,我们可以将问题抽象为一个线性规划问题。 设x1为用于生产3.1m长度棒料的数量,x2为用于生产2.5m长度棒料的数量,x3为用于生产1.7m长度棒料的数量。 我们需要最小化废料的数量,废料的数量可以表示为(9 - 3.1x1 - 2.5x2 - 1.7x3)。 该问题的目标函数可以表示为:minimize (9 - 3.1x1 - 2.5x2 - 1.7x3) 同时,我们需要满足以下约束条件: 1. 3.1m长度棒料的需求量为200根:x1 >= 200 2. 2.5m长度棒料的需求量为100根:x2 >= 100 3. 1.7m长度棒料的需求量为300根:x3 >= 300 4. 原料长度为9m,使用的原料长度不能超过9m:3.1x1 + 2.5x2 + 1.7x3 <= 9 整理为线性规划模型: minimize (9 - 3.1x1 - 2.5x2 - 1.7x3) subject to: x1 >= 200 x2 >= 100 x3 >= 300 3.1x1 + 2.5x2 + 1.7x3 <= 9 该线性规划模型可以通过相应的优化算法求解,以获得使废料最少的下料方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值