DeepSeek 突然崛起的原因剖析及对外界的影响

在全球人工智能大模型的激烈竞争中,DeepSeek 宛如一匹黑马,迅速崛起并成为行业焦点。它的异军突起并非偶然,而是多种因素共同作用的结果,同时也对外界产生了深远的影响。

一、崛起原因

(一)强大的技术实力

  1. 创新的架构设计

DeepSeek 在模型架构方面不断创新。以 DeepSeek - V2 为例,它采用 Transformer 架构,其中每个 Transformer 块由一个注意力模块和一个前馈网络 (FFN) 组成。在注意力机制和 FFN 方面,研究团队设计并采用了创新架构,引入 MLA (Multi - head Latent Attention) 架构,大幅减少了计算量和推理显存。自研 Sparse 结构 DeepSeekMoE 进一步将计算量降低,两者结合最终实现模型性能跨级别的提升 。而 DeepSeek - V3 模型采用了混合专家架构,带有多头潜在注意力变压器,包含 256 个路由专家和 1 个共享专家,每个令牌可激活 370 亿个以上的参数。这种独特的架构设计使得模型在处理复杂任务时能够更加高效地分配计算资源,提升了模型的性能和泛化能力,在数学能力、算法类代码场景等方面表现出色,在多语言编程测试排行榜中,已超越 Anthropic 的 Claude 3.5 Sonnet 大模型,仅次于 OpenAI o1 大模型。

        2.高效的训练机制

DeepSeek - V3 在约 55 天内完成训练,成本为 558 万美元,相比同类型模型使用的资源显著减少。它基于 14.8 万亿个令牌的数据集进行训练,全部训练成本总计为 557.6 万美元(仅包括正式训练成本,不包括与先前在架构

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压电流,确保电流电压波形的良好特性。此外,文章还讨论了模型中的关键技术挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaocang668888

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值