2180: GJJ的日常之沉迷数学 (逆元)

点击打开链接

2180: GJJ的日常之沉迷数学

Time Limit: 1 Sec   Memory Limit: 128 MB
Submit: 340   Solved: 46

Submit Status Web Board

Description

GJJ每天都要膜拜一发数学大佬,因为GJJ的数学太差了。这不,GJJ又遇到难题了,他想求助WJJ,但是WJJ这几天忙于追妹子,哪有时间给他讲题, 于是GJJ求助于热爱ACM的你,Acmer们能帮帮他吗?问题是求: k^0 + k^1 +...+ k^(n) mod p (0 < k < 100, 0 <= n <= 10^9, p = 1000000007)
例如:6^0 + 6^1 +...+ 6^(10) mod 1000000007 (其中k = 6, n = 10, p = 1000000007)

Input

输入测试数据有多组,每组输入两个整数k, n

Output

每组测试数据输出:Case #: 计算结果

Sample Input

2 16 10

Sample Output

Case 1: 3Case 2: 72559411

题解:对等比数列的前n和取模,s=(q^n-1)/(q-1),当q=1时特判。

代码:

#include<cstdio>
typedef long long LL;
const LL MOD =1e9 +7;

LL quickMod(LL a,LL b)
{
	LL ans=1;
	while(b)
	{
		if(b&1)
		ans=ans*a%MOD;
		a=a*a%MOD;
		b>>=1;
	}
	return ans;
}

int main()
{
    int cnt=0;
	int n,m;LL a,b,x;
	while(~scanf("%d%d",&n,&m))
	{
		if(n==1)
		{
			printf("Case %d: %d\n", ++cnt, m+1);
			continue;
		}                    //s=(q^n-1)/(q-1),
		a=quickMod(n,m+1)-1; //(q^n-1)
		b=n-1;               //(q-1)
		x=quickMod(b,MOD-2); //1/(q-1)
		printf("Case %d: %lld\n", ++cnt, a*x%MOD);
	}
return 0;
}







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值