高斯消元求解模线性方程-poj2947

https://vj.xtuacm.cf/contest/view.action?cid=115#problem/P

这题目难点在于矩阵构建和取模

有n种器具,m个已知条件,
每个条件中给出生产器具的 起始时间与结束时间(以星期几的方式给出),生产的器具总数和它们各是哪一种器具。
求生产每种器具所需天数,规定天数范围为3~9。
设生产一个器具i所需天数为Xi,每个条件中生产器具i的个数为ai,生产总天数为S。
可得:a1*X1+a2*X2+……+an*Xn = S
只是题目生产所需时间是以星期几的方式给出,即我们只知道S(mod7)的值,所以要对方程两边对7取模:
(a1*X1+a2*X2+……+an*Xn)mod7 = S (mod7)
这样我们就得到了一系列的模线性方程,可用高斯消元求解。
注意规定天数为3~9,所以当我们求到0~2的解时记得加上7。

strcmp(s, “MON”)==0 如果等于0两个字符串相同

#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;
int n,m;
const int MAXN=500;
int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元
inline int gcd(int a,int b)
{
    int t;
    while(b!=0)
    {
        t=b;
        b=a%b;
        a=t;
    }
    return a;
}
inline int lcm(int a,int b)
{
    return a/gcd(a,b)*b;//先除后乘防溢出
}
void Debug()
{
    for(int i=0;i<m;i++)
         {
             for(int j=0;j<=n;j++)
             cout<<a[i][j]<<" ";
             cout<<endl;
         }

}
// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var)
{
    int i,j,k;
    int max_r;// 当前这列绝对值最大的行.
    int col;//当前处理的列
    int ta,tb;
    int LCM;
    int temp;
    int free_x_num;
    int free_index;
    for(int i=0; i<=var; i++)
    {
        x[i]=0;
        free_x[i]=true;
    }
    //转换为阶梯阵.
    col=0; // 当前处理的列
    for(k = 0; k < equ && col < var; k++,col++)
    {
        // 枚举当前处理的行.
        // 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
        max_r=k;
        for(i=k+1; i<equ; i++)
        {
            if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;//abs是整数取绝对值,fabs是浮点数取绝对值
        }
        if(max_r!=k)
        {
            // 与第k行交换.
            for(j=k; j<var+1; j++) swap(a[k][j],a[max_r][j]);
        }
        if(a[k][col]==0)
        {
            // 说明该col列第k行以下全是0了,则处理当前行的下一列.
            k--;
            continue;
        }
        for(i=k+1; i<equ; i++)
        {
            // 枚举要删去的行.
            if(a[i][col]!=0)
            {
                /*
                    如果是两两之间是异或而不是加的话,那么按照方案二
                */
                //方案一
                LCM = lcm(abs(a[i][col]),abs(a[k][col]));
                ta = LCM/abs(a[i][col]);
                tb = LCM/abs(a[k][col]);
                if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加
                for(j=col; j<var+1; j++)
                {
                 //取模
                    a[i][j] = ((a[i][j]*ta-a[k][j]*tb)%7+7)%7;
                }
            }
        }
    }
    //cout<<k<<" "<<var<<endl;
     // Debug();
    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
    for (i = k; i < equ; i++)
        //表示k还没到尽头,但col已经到了变量那一列。这就意味着后面的几行只有一个常量,如果常量不是0.则无解
    {
        // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
        if (a[i][col] != 0) return -1;
    }
    // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
    // 且出现的行数即为自由变元的个数.
    if (k < var)
    {
        /*以下到return之前均为求变元*/
        // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
        for (i = k - 1; i >= 0; i--)
        {
            // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
            // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
            free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
            for (j = 0; j < var; j++)
            {
                if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
            }
            if (free_x_num > 1) continue; // 无法求解出确定的变元.
            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
            temp = a[i][var];
            for (j = 0; j < var; j++)
            {
                if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
            }
            x[free_index] = temp / a[i][free_index]; // 求出该变元.
            free_x[free_index] = 0; // 该变元是确定的.
        }
        return var - k; // 自由变元有var - k个.
    }
    // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
    // 计算出Xn-1, Xn-2 ... X0.
    //同上。如果是模二就要用方案二
    //方案一
    for (i = var - 1; i >= 0; i--)
    {
        temp = a[i][var];
        for (j = i + 1; j < var; j++)
        {
            if (a[i][j] != 0) temp -= a[i][j] * x[j];
            temp=(temp%7+7)%7;
        }
        //if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
        //取模处理
        while(temp%a[i][i]!=0)temp+=7;
        x[i] = (temp / a[i][i])%7;
        if(x[i]<=2)x[i]+=7;
    }
    return 0;
}
int tran(char s[5])//判断两个字符串是否相同
{
    if(strcmp(s, "MON")==0) return 1;
    if(strcmp(s, "TUE")==0) return 2;
    if(strcmp(s, "WED")==0) return 3;
    if(strcmp(s, "THU")==0) return 4;
    if(strcmp(s, "FRI")==0) return 5;
    if(strcmp(s, "SAT")==0) return 6;
    if(strcmp(s, "SUN")==0) return 7;
}
int main()
{
    char p[5],q[5];

    while(~scanf("%d%d",&n,&m),n+m)
    {
        memset(a,0,sizeof(a));
        memset(x,0,sizeof(x));
        for(int i=0;i<m;i++)
        {
            int s;
            scanf("%d%s%s",&s,p,q);
            int p1=tran(p);
            int p2=tran(q);
            a[i][n]=(p2-p1+1+7)%7;
            for(int j=0;j<s;j++)
            {
                int l;
                scanf("%d",&l);
                a[i][l-1]=(a[i][l-1]+1)%7;
            }
        }
        int ans=Gauss(m,n);
        //cout<<ans<<endl;
        if(ans==0)
        {
            for(int i=0;i<n;i++)
            {
                if(i!=n-1)printf("%d ",x[i]);
                else printf("%d\n",x[i]);
            }
        }
        else if(ans==-1)printf("Inconsistent data.\n");
        else printf("Multiple solutions.\n");
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值