
Python数据可视化
Jepson2017
这个作者很懒,什么都没留下…
展开
-
pyhton数据可视化seaborn(一) -- 整体风格
什么是SeabornSeaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。Seaborn是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充,而不是替代物。同时它能高度兼容numpy与pandas数据结构以及scipy与statsmodel原创 2021-07-12 14:40:29 · 694 阅读 · 0 评论 -
Python数据可是化seaborn(二) -- 直方图与密度图
分布数据可视化 - 直方图与密度图distplot()kdeplot()rugplot()import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as sns%matplotlib inline#设置风格、尺度sns.set_style("darkgrid") sns.set_context("paper")#屏蔽警告import warningswarning原创 2021-07-12 18:00:54 · 2549 阅读 · 1 评论 -
Python数据可视化seaborn(三) -- 分类散点图
分布数据可视化 - 分类散点图stripplot() / swarmplot()import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as sns%matplotlib inline#设置风格、尺度sns.set_style("whitegrid") sns.set_context("paper")#屏蔽警告import warningswarnings.filt原创 2021-07-12 18:37:08 · 6251 阅读 · 3 评论 -
Python数据可视化seaborn(四) --分布图
分布数据可视化 - 分布图boxplot() / violinplot() / lvplot()import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as sns%matplotlib inline#设置风格、尺度sns.set_style("whitegrid") sns.set_context("paper")#屏蔽警告import warningswarn原创 2021-07-12 22:50:24 · 1533 阅读 · 2 评论 -
Python数据可视化seaborn(五) -- 分类统计图
分类数据可视化 - 统计图barplot() / countplot() / pointplot()import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as sns%matplotlib inline#设置风格、尺度sns.set_style("whitegrid") sns.set_context("paper")#屏蔽警告import warningswarn原创 2021-07-13 09:17:37 · 1841 阅读 · 0 评论 -
Python数据可视化seaborn(六) -- 线性关系数据可视化
线性关系数据可视化:lmplot()import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as sns%matplotlib inline#设置风格、尺度sns.set_style("whitegrid") sns.set_context("paper")#屏蔽警告import warningswarnings.filterwarnings('ignore')基原创 2021-07-13 22:30:34 · 487 阅读 · 0 评论 -
Python数据可视化seaborn(七) -- 时间线图表、热图
时间线图表、热图tsplot() / heatmap()import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as sns%matplotlib inline#设置风格、尺度sns.set_style("darkgrid") sns.set_context("paper")#屏蔽警告import warningswarnings.filterwarnings('i原创 2021-07-14 10:15:43 · 1743 阅读 · 1 评论 -
Python数据可视化seaborn(八) -- 结构化图表可视化
结构化图表可视化 - FacetGrid()import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as sns%matplotlib inline#设置风格、尺度sns.set_style("ticks") sns.set_context("paper")#屏蔽警告import warningswarnings.filterwarnings('ignore')1原创 2021-07-14 11:01:02 · 369 阅读 · 4 评论 -
Python交互图表可视化 bokeh(一) -- 绘图空间基本操作
Bokehpandas和matplotlib就可以直接出分析的图表了,最基本的出图方式。是面向数据分析过程中出图的工具;Seaborn相比matplotlib封装了一些对数据的组合和识别的功能;用Seaborn出一些针对seaborn的图表是很快的,比如说分布图、热图、分类分布图等。如果用matplotlib需要先group by先分组再出图;Seaborn在出图的方式上,除了图表的可视化好看,还多了出图的公用性的东西; 关联数据用get去做,空间数据用echart、powmart去做。什么是Boke原创 2021-07-16 09:03:24 · 2260 阅读 · 2 评论 -
Python交互图表可视化 bokeh(二) -- 图表辅助参数设置
图表辅助参数设置:辅助标注、注释、矢量箭头import numpy as np import pandas as pdimport matplotlib.pyplot as plt%matplotlib inline# 不发出警告import warningswarnings.filterwarnings('ignore')# 导入notebook绘图模块from bokeh.io import output_notebookoutput_notebook()# 导入图表绘制、图原创 2021-07-16 16:41:01 · 813 阅读 · 0 评论 -
Python交互图表可视化 bokeh(三) --散点图
散点图基本散点图绘制散点图颜色、大小设置方法不同符号的散点图import numpy as np import pandas as pdimport matplotlib.pyplot as plt%matplotlib inline# 不发出警告import warningswarnings.filterwarnings('ignore')# 导入notebook绘图模块from bokeh.io import output_notebookoutput_notebook原创 2021-07-16 17:53:35 · 1687 阅读 · 1 评论 -
Python交互图表可视化 bokeh(四) -- 折线图与面积图
折线图与面积图单线图、多线图面积图、堆叠面积图import numpy as np import pandas as pdimport matplotlib.pyplot as plt%matplotlib inline# 不发出警告import warningswarnings.filterwarnings('ignore')# 导入notebook绘图模块from bokeh.io import output_notebookoutput_notebook()# 导入原创 2021-07-16 19:52:25 · 2882 阅读 · 1 评论 -
Python交互图表可视化 bokeh(五) -- 柱状图、堆叠图、直方图
柱状图、堆叠图、直方图单系列柱状图多系列柱状图堆叠图直方图import numpy as np import pandas as pdimport matplotlib.pyplot as plt%matplotlib inline# 不发出警告import warningswarnings.filterwarnings('ignore')# 导入notebook绘图模块from bokeh.io import output_notebookoutput_notebook原创 2021-07-18 19:39:42 · 3474 阅读 · 6 评论 -
Python交互图表可视化 bokeh(六) -- 绘图表达进阶操作
绘图表达进阶操作轴线设置浮动设置多图表设置import numpy as np import pandas as pdimport matplotlib.pyplot as plt%matplotlib inline# 不发出警告import warningswarnings.filterwarnings('ignore')# 导入notebook绘图模块from bokeh.io import output_notebookoutput_notebook()# 导入图原创 2021-07-18 23:17:01 · 664 阅读 · 0 评论 -
Python交互图表可视化 bokeh(七) -- 工具拦设置
ToolBar工具栏设置位置设置移动、放大缩小、存储、刷新选择提示框、十字线import numpy as np import pandas as pdimport matplotlib.pyplot as plt%matplotlib inline# 不发出警告import warningswarnings.filterwarnings('ignore')# 导入notebook绘图模块from bokeh.io import output_notebookoutput原创 2021-07-19 09:39:04 · 648 阅读 · 2 评论 -
Python交互图表可视化 bokeh(八) -- 其他交互工具设置
其他交互工具设置import numpy as np import pandas as pdimport matplotlib.pyplot as plt%matplotlib inline# 不发出警告import warningswarnings.filterwarnings('ignore')# 导入notebook绘图模块from bokeh.io import output_notebookoutput_notebook()# 导入图表绘制、图表展示模块from b原创 2021-07-19 21:55:55 · 479 阅读 · 1 评论 -
Python数据可视化工具matplotlib(一)-- 简介及图表窗口
Matplotlib简介及图表窗口Matplotlib:一个python版的matlab绘图接口,以2D为主,支持python、numpy、pandas基本数据结构,运行高效且有较丰富的图表库# 导入模块包import numpy as npimport pandas as pdimport matplotlib.pyplot as plt图表窗口1 - plt.show()plt.plot(np.random.rand(10))plt.show() # 直接生成图表图表窗口2原创 2021-07-20 08:28:01 · 881 阅读 · 6 评论 -
Python数据可视化工具matplotlib(二)-- 图表的基本元素及样式参数
图表的基本元素及样式参数import pandas as pdimport numpy as npimport matplotlib.pyplot as plt%matplotlib inline图名、图例、轴标签、轴边界、轴刻度、轴刻度标签等df=pd.DataFrame(np.random.rand(10,2), columns=['A', 'B'])df.head()fig=df.plot(figsize=(6,4)) #figsize: 创建图表窗口,设置窗口大小# 创建原创 2021-07-20 12:39:20 · 664 阅读 · 1 评论 -
Python数据可视化工具matplotlib(三)-- 子图
子图在matplotlib中,整个图像为一个Figure对象在Figure对象中可以包含一个或者多个Axes对象每个Axes(ax)对象都是一个拥有自己坐标系统的绘图区域plt.figure, plt.subplotimport pandas as pdimport numpy as npimport matplotlib.pyplot as plt%matplotlib inlineplt.figure() 绘图对象# plt.figure(num=None, figsize=No原创 2021-07-20 18:29:24 · 756 阅读 · 0 评论 -
Python数据可视化工具matplotlib(四)-- 基本图表绘制
基本图表绘制图表类别:线形图、柱状图、密度图,以横纵坐标两个维度为主同时可延展出多种其他图表样式plt.plot(kind='line', ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=No原创 2021-07-20 23:02:43 · 525 阅读 · 5 评论 -
Python数据可视化工具matplotlib(五)-- 面积图、填图、饼图
面积图、填图、饼图plt.plot.area()plt.fill(), plt.fill_between()plt.pie()import numpy as npimport pandas as pdimport matplotlib.pyplot as plt%matplotlib inline面积图: plt.plot.area()fig,axes = plt.subplots(2,1,figsize = (10,6))df1 = pd.DataFrame(np.random.ra原创 2021-07-20 23:18:01 · 2146 阅读 · 0 评论 -
Python数据可视化工具matplotlib(六)-- 直方图、密度图、散点图、极坐标图、雷达图
直方图、密度图import numpy as npimport pandas as pdimport matplotlib.pyplot as plt%matplotlib inline#plt.hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, #histtype='bar', align='mid', orientation='vertical',rwidth=Non原创 2021-07-20 23:30:19 · 1336 阅读 · 5 评论 -
Python数据可视化工具matplotlib(七)-- 箱型图
箱型图箱型图:又称为盒须图、盒式图、盒状图或箱线图,是一种用作显示一组数据分散情况资料的统计图包含一组数据的:最大值、最小值、中位数、上四分位数(Q1)、下四分位数(Q3)、异常值① 中位数 → 一组数据平均分成两份,中间的数② 下四分位数Q1 → 是将序列平均分成四份,计算(n+1)/4与(n-1)/4两种,一般使用(n+1)/4③ 上四分位数Q3 → 是将序列平均分成四份,计算(1+n)/4*3=6.75④ 内限 → T形的盒须就是内限,最大值区间Q3+1.5IQR,最小值区间Q1-1.5I原创 2021-07-21 08:30:21 · 2918 阅读 · 1 评论 -
Python数据可视化工具matplotlib(八)-- 表格
表格样式创建表格视觉样式:Dataframe.style → 返回pandas.Styler对象的属性,具有格式化和显示Dataframe的有用方法样式创建:① Styler.applymap:elementwise → 按元素方式处理Dataframe② Styler.apply:column- / row- / table-wise → 按行/列处理Dataframeimport numpy as npimport pandas as pdimport matplotlib.pyplo原创 2021-07-21 08:59:44 · 4376 阅读 · 3 评论