SHAP(SHapley Additive exPlanations)可解释性与聚类分析的结合是当前机器学习可解释性研究的热门方向之一。这种结合不仅能深入理解模型的决策过程,还能通过聚类揭示数据中的潜在模式,进一步提升模型的可解释性和性能。
我还整理出了相关的论文+开源代码,以下是精选部分论文
更多论文资料可以关注:AI科技探寻领取相关[论文+开源码】
论文1
标题:
Shapley-based Explainable AI for Clustering Applications in Fault Diagnosis and Prognosis
基于Shapley值的可解释人工智能在故障诊断和预测中的聚类应用
方法:
-
Shapley值分析:利用Shapley值对特征贡献进行量化,为聚类提供解释性支持。
-
UMAP降维:通过Uniform Manifold Approximation and Projection技术将高维数据降维到低维空间,便于可视化和聚类。
-
HDBSCAN聚类:采用层次密度基空间聚类算法ÿ